CSE 291 – Al Agents 2/11 – Attention and Language Modeling

Prithviraj Ammanabrolu

Thanks to Lillian Weng, Abby Morgan, Jay Alamar, and Brandon Amos. Some slides were adapted form their courses / blogs.

Model Free vs Model Based RL

- Model-Free RL
 - No model
 - Learn value function (and/or policy) from experience
- Model-Based RL
 - Learn a model from experience
 - Plan value function (and/or policy) from model

Sample Based Planning

- A simple but powerful approach to planning
- Use the model only to generate samples
- Sample experience from model

 $S_{t+1} \sim T_{\eta}(S_{t+1} | S_t, A_t)$ $R_{t+1} = R_{\eta}(R_{t+1} | S_t, A_t)$

- Apply model-free RL to samples, e.g.: Monte-Carlo control Sarsa Q-learning
- Sample-based planning methods are often more efficient

What is a Model?

- A model M is a representation of an MDP <S, A,T, R>, parametrized by η
- We will assume state space S and action space A are known
- So a model M = <T_\eta, R_\eta> represents state transitions T_\eta \approx T and rewards R\eta \approx R

 $S_{t+1} \sim P\eta(S_{t+1} | S_t, A_t)$ $R_{t+1} = R\eta(R_{t+1} | S_t, A_t)$

• Typically assume conditional independence between state transitions and rewards

 $P[S_{t+1}, R_{t+1} | S_t, A_t] = P[S_{t+1} | S_t, A_t] P[R_{t+1} | S_t, A_t]$

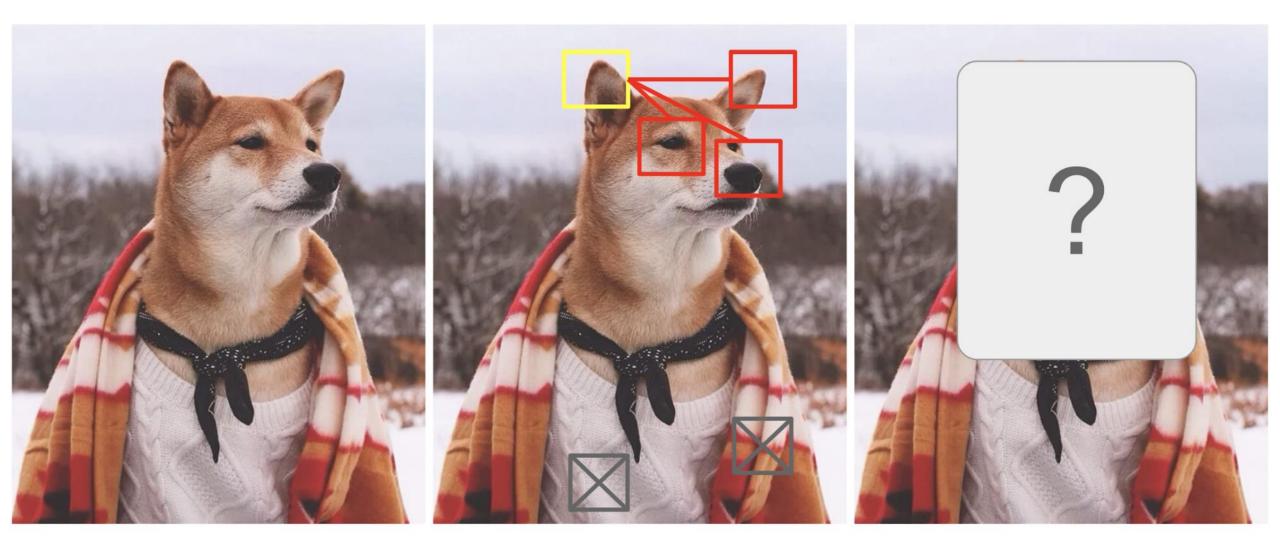
Pros and Cons of MBRL

- Pros
 - Can do all the (self, un) supervised learning tricks to learn from large scale data
 - Can reason about uncertainty
- Cons
 - Need model of T first
 - Will build estimate of value from that
 - Two(+) sources of error

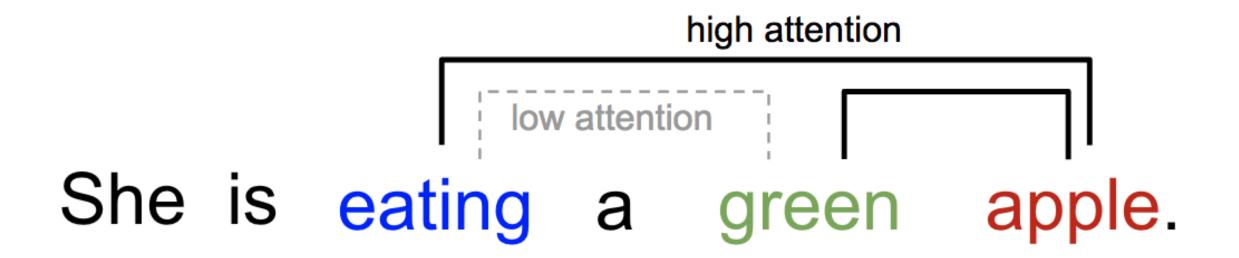
Simultaneous Bottlenecks of Deep RL

- The function approximator needs to be "good" for the task
- CNNs were great for Atari and then Go
- Why did they never work for language?

Pay Attention

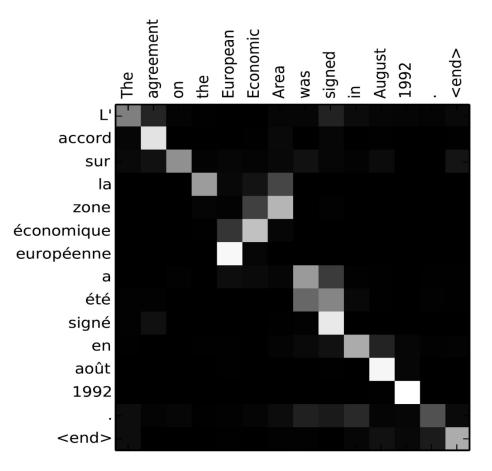


Pay Attention to your Words



Deep Learning Attention

• A vector of importance weights over an input sequence



Attention Alignment

$$\mathbf{x} = [x_1, x_2, \dots, x_n] \ \mathbf{y} = [y_1, y_2, \dots, y_m]$$

$$egin{aligned} \mathbf{c}_t &= \sum_{i=1}^n lpha_{t,i} oldsymbol{h}_i \ lpha_{t,i} &= \mathrm{align}(y_t, x_i) \ &= rac{\mathrm{exp}(\mathrm{score}(oldsymbol{s}_{t-1}, oldsymbol{h}_i))}{\sum_{i'=1}^n \mathrm{exp}(\mathrm{score}(oldsymbol{s}_{t-1}, oldsymbol{h}_{i'})) \end{aligned}$$

; Context vector for output y_t

; How well two words y_t and x_i are aligned.

; Softmax of some predefined alignment score..

Types of Attention (pre Vaswani)

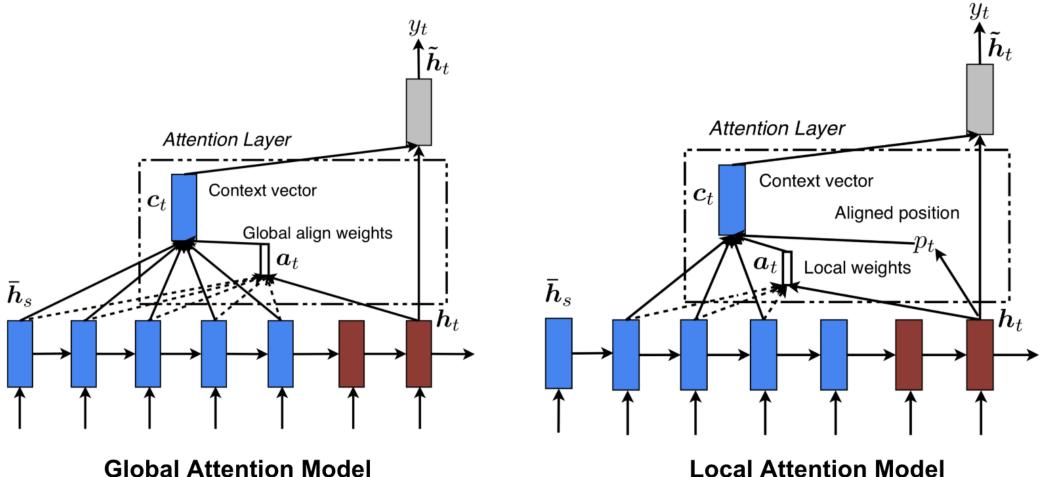
Name	Alignment score function	Citation
Content-base attention	$ ext{score}(oldsymbol{s}_t,oldsymbol{h}_i) = ext{cosine}[oldsymbol{s}_t,oldsymbol{h}_i]$	Graves2014
Additive(*)	$ ext{score}(oldsymbol{s}_t,oldsymbol{h}_i) = \mathbf{v}_a^ op anh(\mathbf{W}_a[oldsymbol{s}_{t-1};oldsymbol{h}_i])$	Bahdanau2015
Location- Base	$\alpha_{t,i} = \operatorname{softmax}(\mathbf{W}_a \boldsymbol{s}_t)$ Note: This simplifies the softmax alignment to only depend on the target position.	Luong2015
General	$ ext{score}(m{s}_t,m{h}_i) = m{s}_t^ op \mathbf{W}_am{h}_i$ where \mathbf{W}_a is a trainable weight matrix in the attention layer.	Luong2015
Dot-Product	$ ext{score}(oldsymbol{s}_t,oldsymbol{h}_i) = oldsymbol{s}_t^ op oldsymbol{h}_i$	Luong2015
Scaled Dot- Product(^)	$\operatorname{score}(\boldsymbol{s}_t, \boldsymbol{h}_i) = \frac{\boldsymbol{s}_t^{T} \boldsymbol{h}_i}{\sqrt{n}}$ Note: very similar to the dot-product attention except for a scaling factor; where n is the dimension of the source hidden state.	Vaswani2017

Self Attention

- Different parts of the same sequence attend to each other
- Previously it was all one sequence to another
- Proposed by Cheng et al 2016

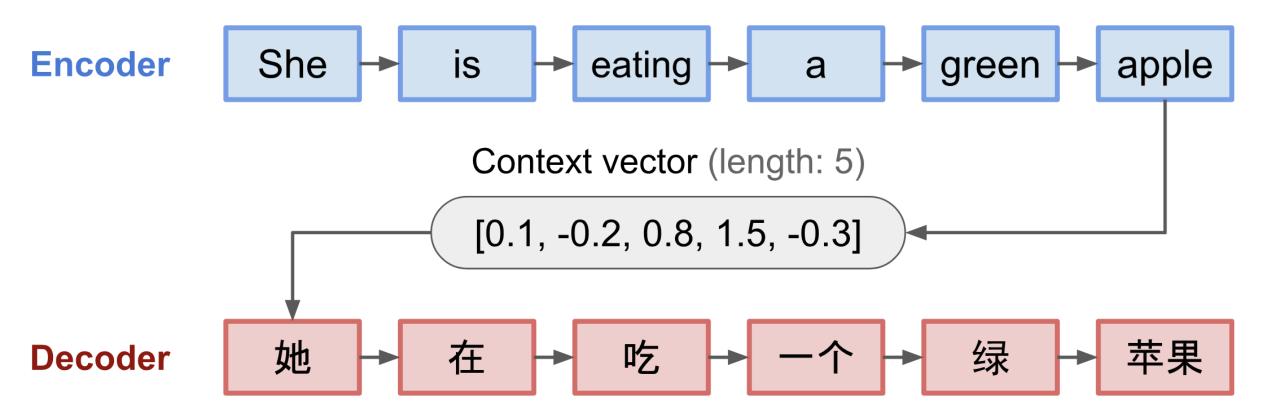
The FBI is chasing a criminal on the run.					
The FBI is chasing a criminal on the run.					
The FBI is chasing a criminal on the run.					
The FBI	is chasing a criminal on the run.				
The FBI	is chasing a criminal on the run.				
The FBI	is chasing a criminal on the run.				
The FBI	is chasing a criminal on the run.				
The FBI	is chasing a criminal on the run.				
The FBI	is chasing a criminal on the run.				
The FBI	is chasing a criminal on the run.				

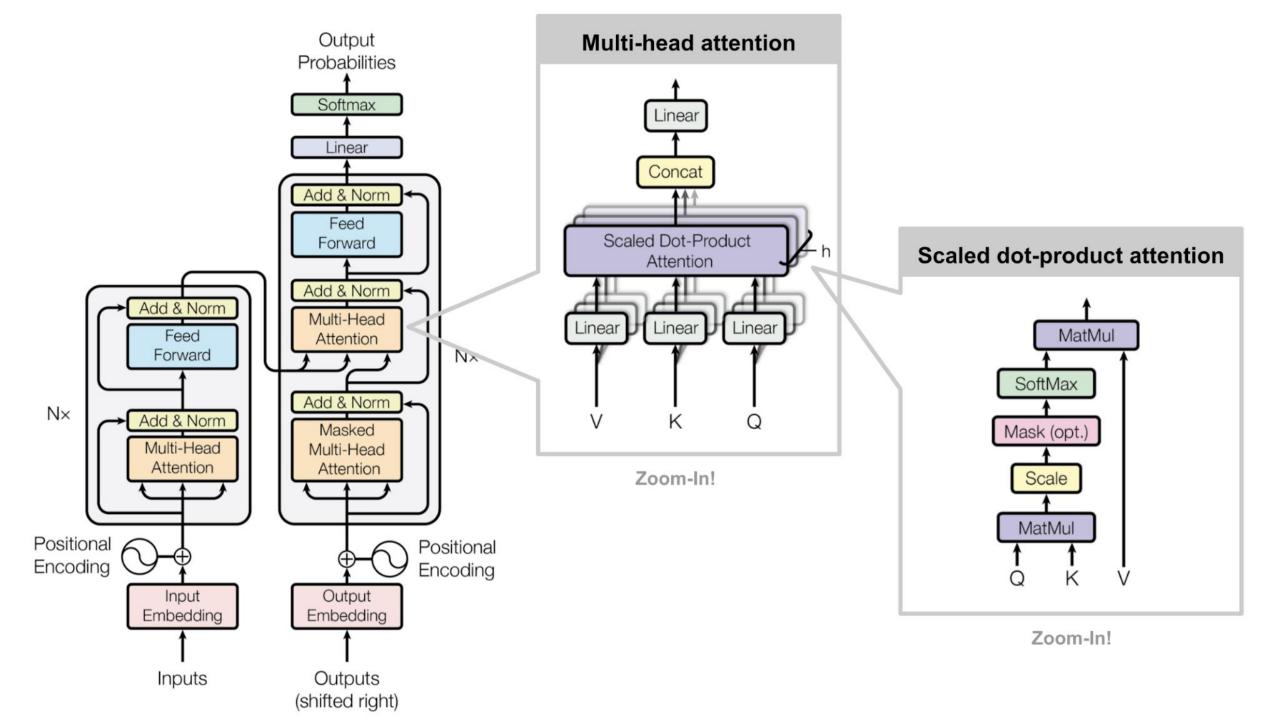
Global vs Local Attention (Luong et al. 2015)



Global Attention Model

Encoder Decoder RNN Failures

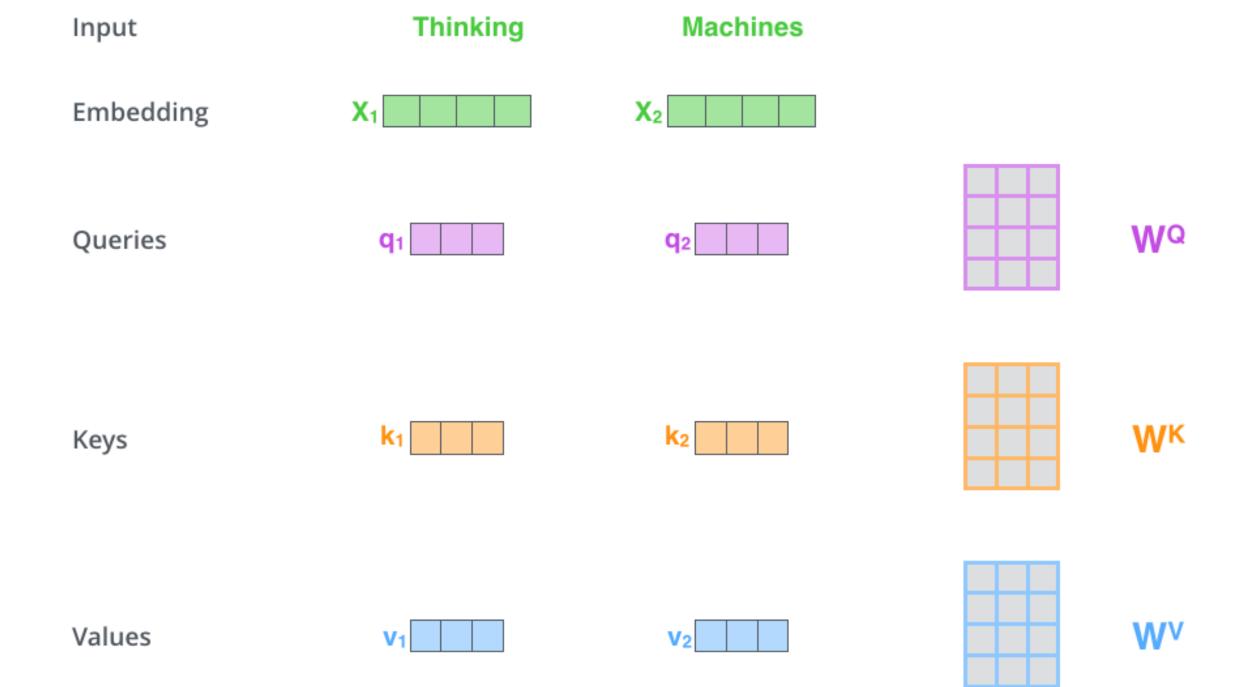


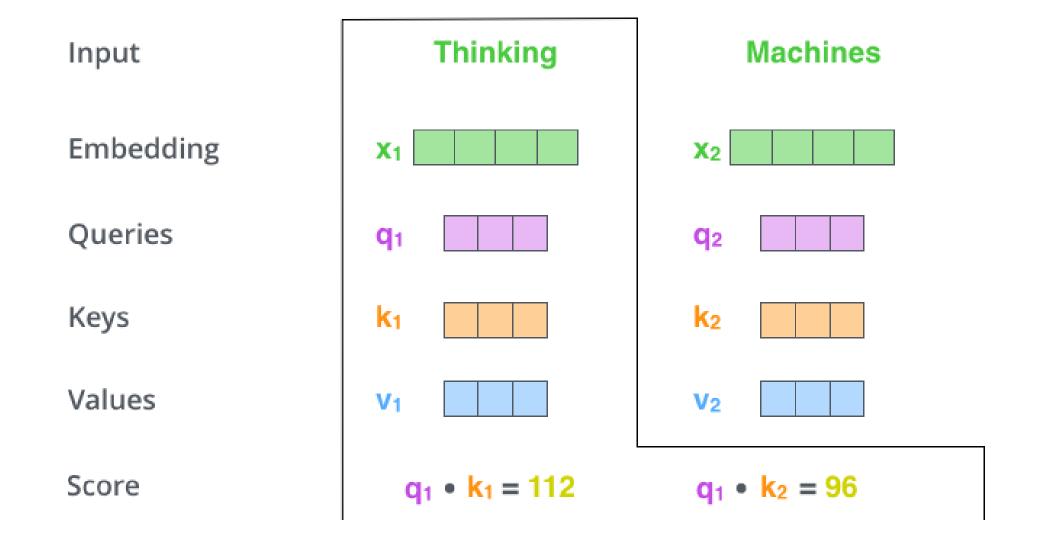


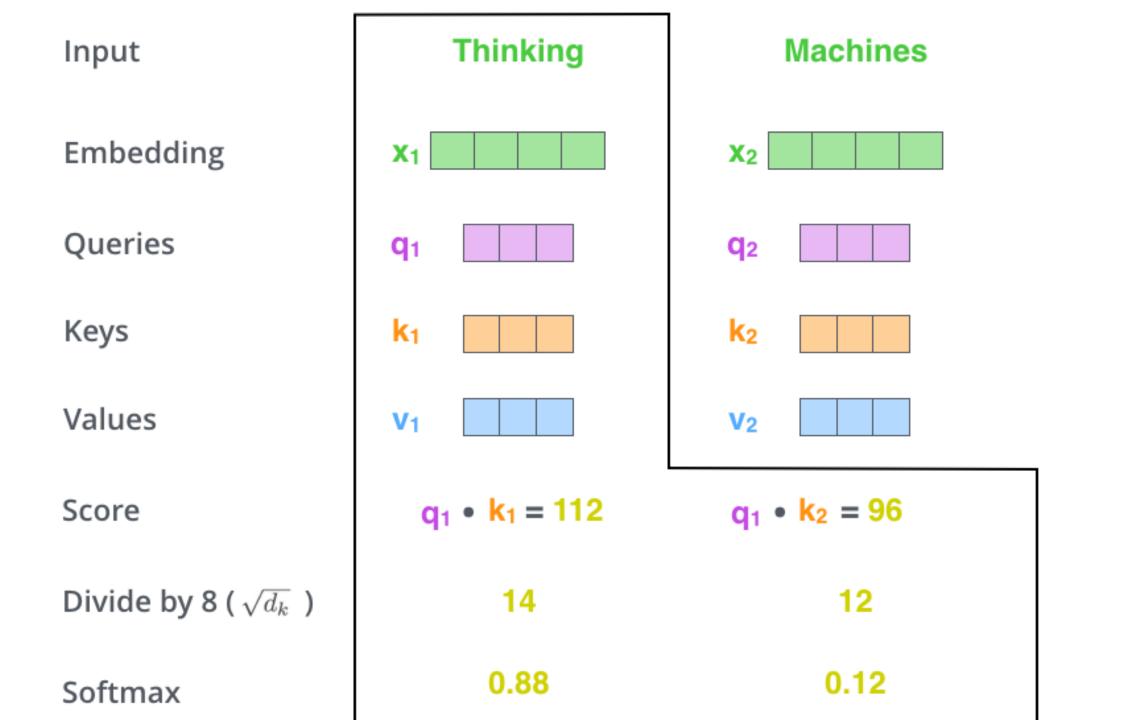
Scaled Dot Product Attention

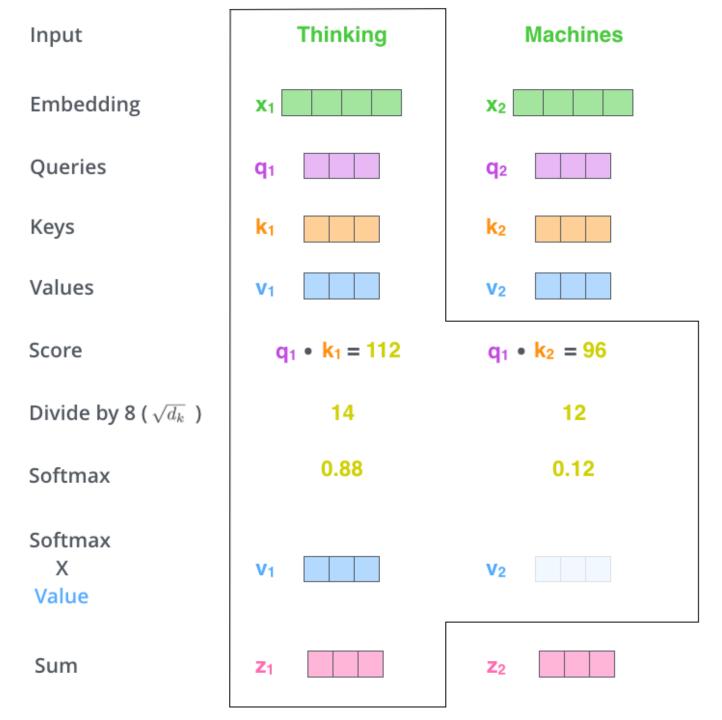
For each input word we create a query, key, value vector

- Query: What are the things I am looking for?
- Key: What are the things that I have?
- Value: What are the things that I will communicate?

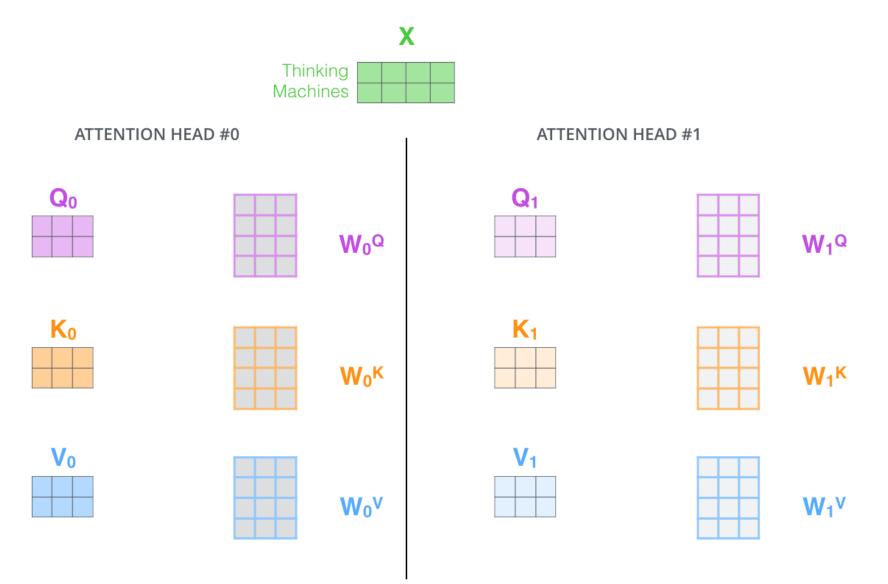








Multi-Head Attention



1) This is our input sentence*

r 2) We embed nce* each word* 3) Split into 8 heads. We multiply X or R with weight matrices

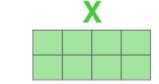
W₀Q

Ν₀ĸ

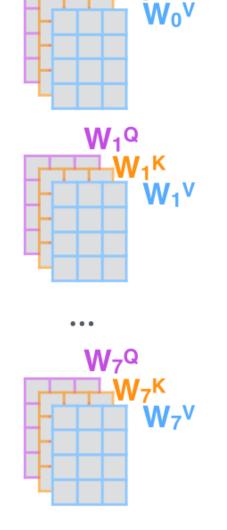
4) Calculate attention using the resulting Q/K/V matrices

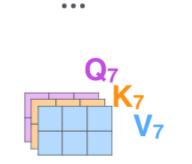
V₀

5) Concatenate the resulting Z matrices, then multiply with weight matrix W^O to produce the output of the layer



* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one



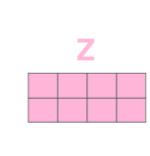


Ζ	7	

...

Zo

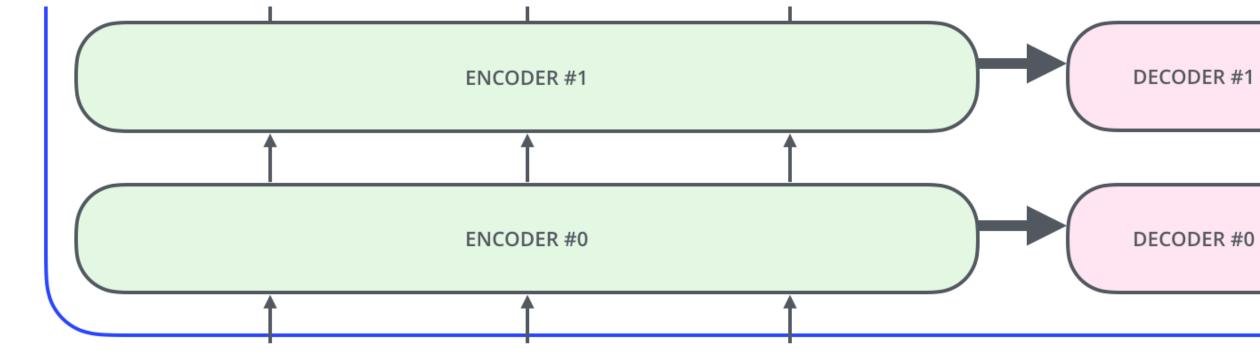
Wo					
	-		_		
	_		_		

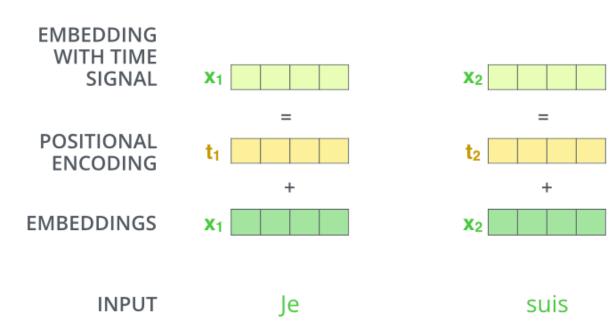


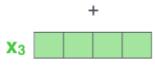
Position Encoding and Tokenizers

Transformer attention as seen so far is position invariant

- Position of a word in a sentence matters, how to encode this?
- How to deal with out of vocabulary words? i.e. how to split the input sequence

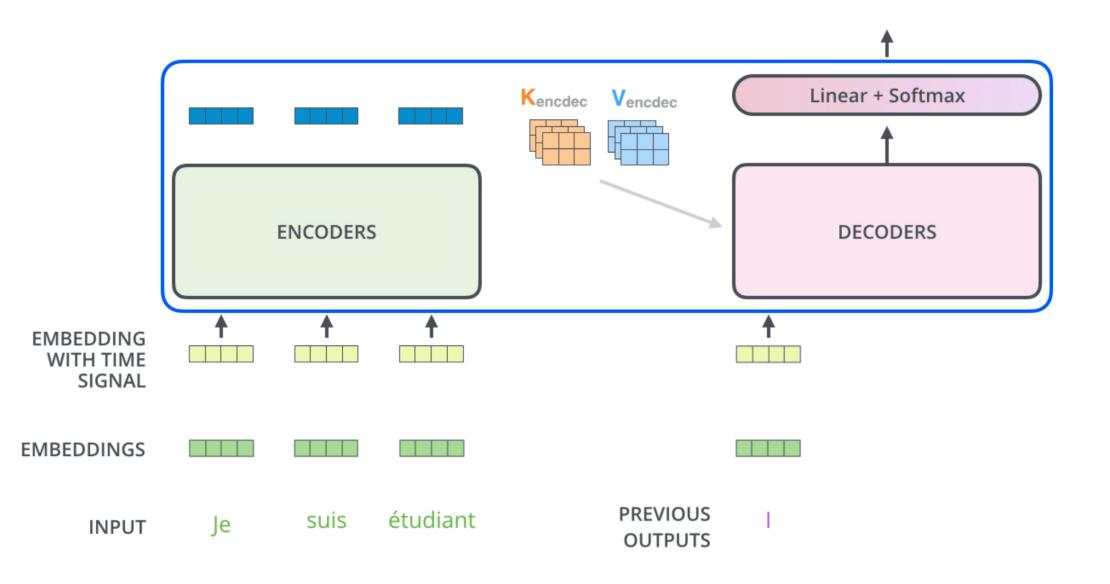






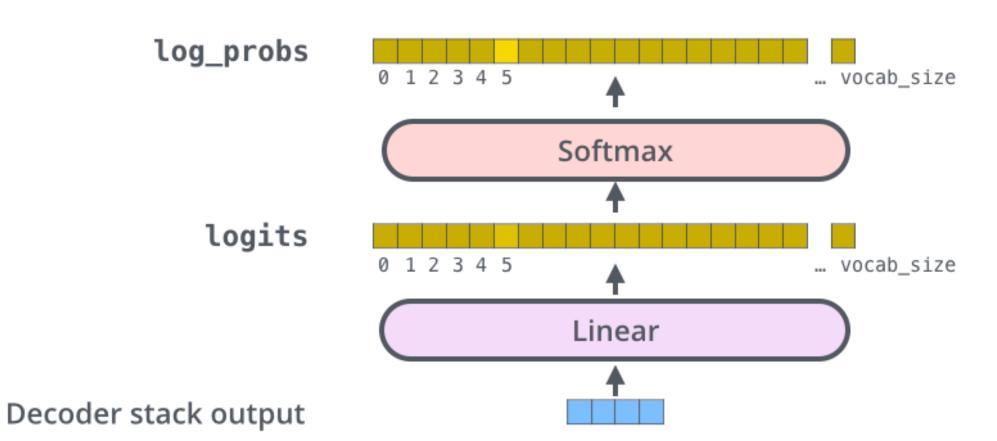
étudiant

Decoding time step: 1 2 3 4 5 6



Which word in our vocabulary is associated with this index?

Get the index of the cell with the highest value (argmax)



am

5

Tokenization

Word Level Deep Learning \rightarrow Deep Learning Character Level Deep Learning \rightarrow D e e p L e a r n i n g Subword Level Deep Learning \rightarrow De ep Learn ##ing

Tokenization

- Subword (Tiktoken Byte Pair Encoding BPE) is the industry standard
- Learned from a representative subset of data

Tokenization (the bane of my existence)

- Many problems you think are LLM limitations are actually (partially) tokenizer issues
- E.g. Is 9.9 greater than 9.11?
 - <u>9.9</u> and <u>9.11</u>
 - compare initial 9
 - compare.
 - compare 9 and 11, wait 11 is greater than 9
 - so 9.9 is not greater than 9.11

How to train this network?

- Language Modeling! Looong history, will not cover here
- Many different forms of objectives

Two popular ones:

- Infill (used for BERT): This is the AI [MASK] Course.
- Next token Prediction (used for GPT): This is the AI Agents _____

Untrained Model Output

0.2 0.	2 0.1	0.2	0.2	0.1
--------	-------	-----	-----	-----

Correct and desired output

0.0 0.0 0.0	1.0	0.0	0.0
-------------	-----	-----	-----

a am I thanks student <eos>

-0.4

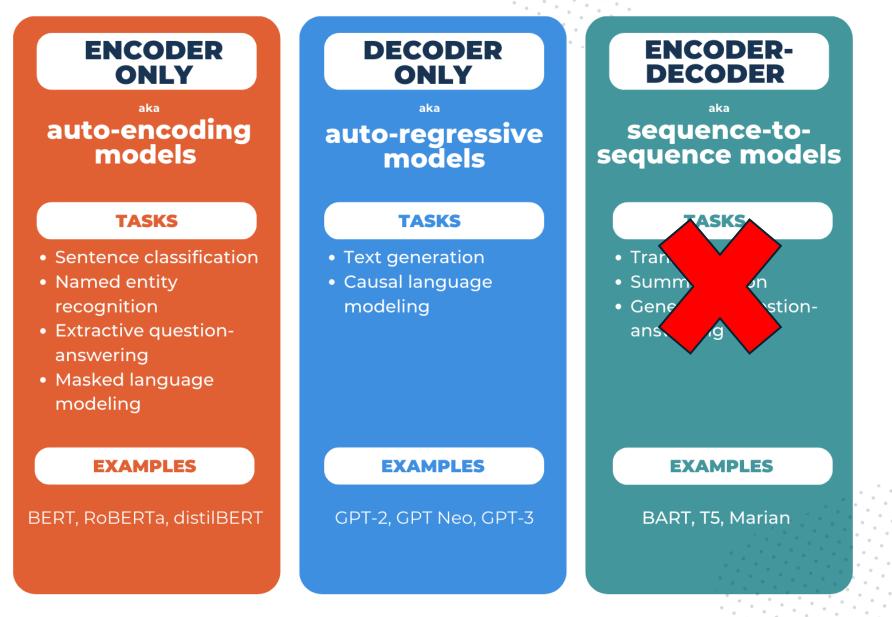
-0.8

0.8

0.4

0.0

Transformers



What does this mean for Deep RL?

- We have a neural net architecture that works well on language!
- We can probably use this as a function approximator for MDPs with language-based state-action spaces
- But how? What even is a language MDP?

In Class Activity

https://github.com/karpathy/nanoGPT