CSE 291 – Al Agents Classical Control, Pre-deep Learning

Prithviraj Ammanabrolu

Thanks to David Silver's DeepMind RL Course and Sheila McIllraith's Planning Course at UofT. Some slides were adapted form there.

Logistics

For paper presentations

- Send me / Bosung your slides 24 hours at least before class
- Have the entire team present
- Look at readings for the topic for ideas on papers (papers the papers on the reading cite, or newer work citing those)

HW 1 has been released, will be due 2/6, covers making simulations (text games) and Search for Planning, PDDL, etc.

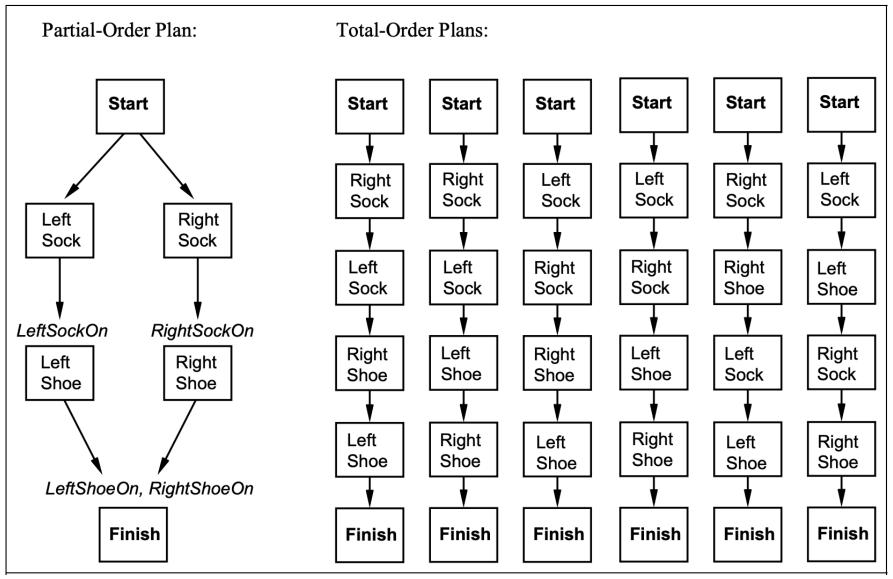
Forward Search

- Some deterministic implementations of forward search:
 - breadth-first search
 - depth-first search
 - best-first search (e.g., A*)
 - greedy search
- Breadth-first and best-first search are sound and complete But they usually aren't practical, requiring too much memory
 - Memory requirement is exponential in the length of the solution
- In practice, more likely to use depth-first search or greedy search
 - Worst-case memory requirement is linear in the length of the solution
 - In general, sound but not complete
 - But classical planning has only finitely many states
 - Thus, can make depth-first search complete by doing loop-checking

Backward Search

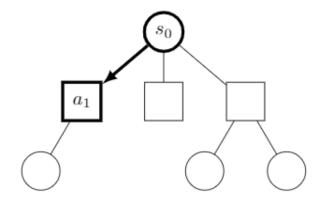
- For forward search, we started at the initial state and computed state transitions
 - new state = T(s,a)
- For backward search, we start at the goal and compute inverse state transitions
 - new set of subgoals = T⁻¹(g,a)
- To define T⁻¹(g,a), must first define relevance: An action a is relevant for a goal g if
 - a makes at least one of g's literals true, $g \cap effects(a) \neq \emptyset$
 - a does not make any of g's literals false, g + ∩ effects (a) = Ø and g– ∩ effects + (a) = Ø

Total Order and Partial Order Plans



Monte Carlo Tree Search

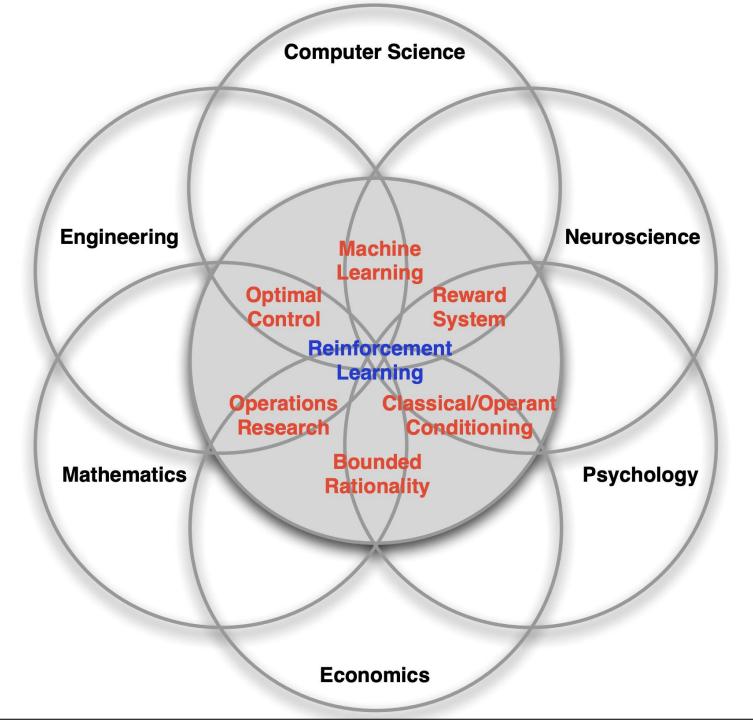
- 4 phases of building out and simulating paths along a search tree
- Various forms of this used in everything from Alpha Zero to modern LLM inference
- For arbitrary problem with start state s₀ and actions a_i
- All states have attributes:
 - Total simulation reward Q(s) and
 - Total no. of visits N(s)



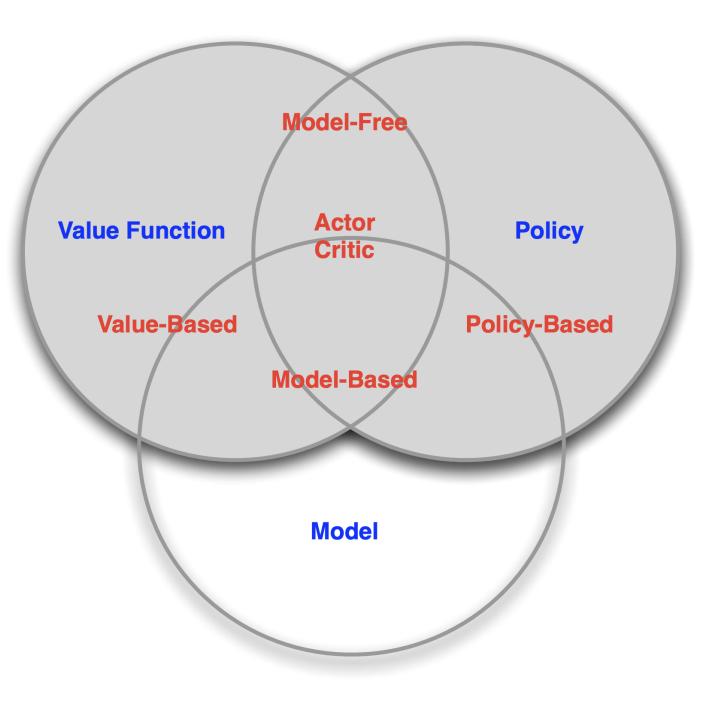
Why Reinforcement Learning?

- Reinforcement Learning:
 - The environment is initially unknown
 - The agent interacts with the environment
 - The agent improves its policy
- Planning:
 - A model of the environment is known
 - The agent performs computations with its model (without any external interaction)
 - The agent improves its policy a.k.a. deliberation, reasoning, introspection, pondering, thought, search

Origins of RL



RL Agent Taxonomy



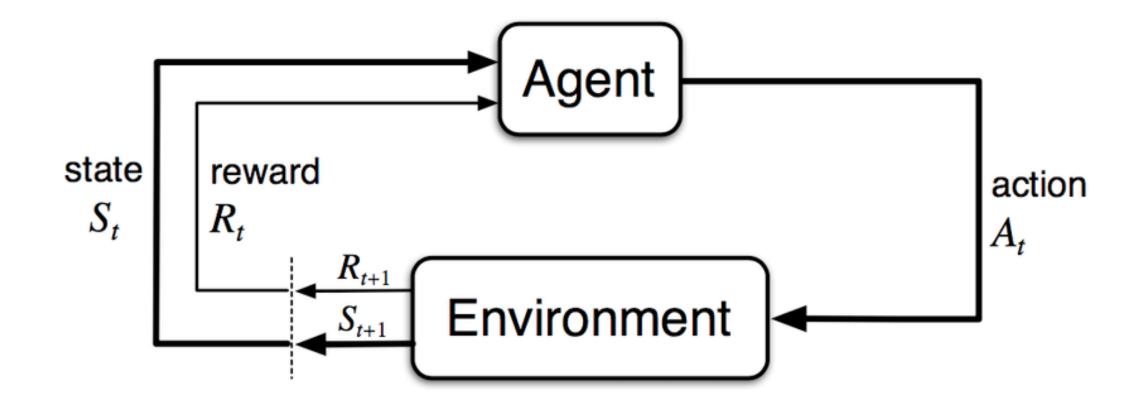
Terminology

- Policy: agent's behavior function
 - Finding optimal policy known as the <u>control</u> problem
- Value function: how good is each state and/or action
 - Finding optimal value function is known as the <u>prediction</u> problem
- Model: agent's representation of the environment

More Terminology on Types of RL

- Model free ← will build up to today
- Model based
- On Policy ← will build up to today
 - Learn directly from your experiences "on the job"
- Off policy
 - Learn from someone else's behavior

Markov Decision Process



Formal MDP Definition

A Markov Decision Process is a tuple <S, A,T, R, γ >

- S is a finite set of states
- A is a finite set of actions
- T is a state transition probability matrix, $T^{a}_{ss'} = P[S_{t+1} = s' | S_{t} = s, A_{t} = a]$
- R is a reward function, $R_s^a = E[R_{t+1} | S_t = s, A_t = a]$
- γ is a discount factor $\gamma \in [0, 1]$.

Returns and Discounting

- The return G_t is the total discounted reward from time-step t. $G_t = R_{t+1} + \gamma R_{t+2} + ... = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$
- The value of receiving reward R after k + 1 time-steps is $\gamma^k R$
- γ~=0 is "myopic", γ~=1 is "far-sighted"
- Why discount?
 - Mathematically convenient, avoids infinite returns
 - Animal/human/investment banker's behavior shows preference for immediate reward

Formal Definition of Policy

- Distribution of action over states: $\pi(a|s) = P[A_t = a | S_t = s]$
- Policy depends only on current state not history, this is the Markov property bit of MDP (how do people get around this for cases where history does matter)
- Theorem (abridged): There always exists an optimal policy for a given finite MDP. It follow the optimal value function.

Formal Definition of Value Function

- State value: expected return starting from state s, and then following policy $\boldsymbol{\pi}$
 - $v_{\pi}(s) = E_{\pi} [G_t | S_t = s]$
- Action value: is the expected return starting from state s, taking action a, and then following policy $\boldsymbol{\pi}$

•
$$q_{\pi}(s, a) = E_{\pi} [G_t | S_t = s, A_t = a]$$

Dynamic Programming

- Building up to RL first requires understanding Dynamic Programming
- Dynamic sequential or temporal component to the problem Programming optimizing a "program", i.e. a policy
- A method for solving complex problems by breaking them down into subproblems
 - Solve the subproblems \rightarrow Combine solutions to subproblems

When to use DP

Dynamic Programming is a very general solution method for problems which have two properties:

- Optimal substructure:
 - Principle of optimality applies
 - Optimal solution can be decomposed into subproblems
- Overlapping subproblems:
 - Subproblems recur many times
 - Solutions can be cached and reused
- Markov decision processes satisfy both properties Bellman equation gives recursive decomposition Value function stores and reuses solutions

Prediction vs Control

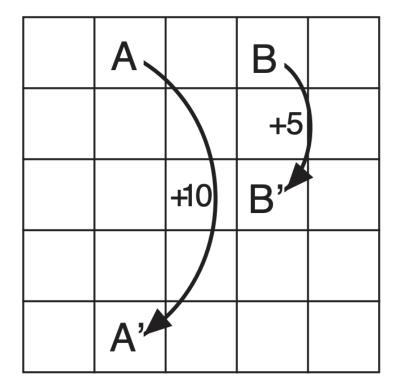
Two problems in RL

- Prediction is the problem of evaluating how good any given state is for getting rewards given a policy
- Control is the problem of selecting actions that give you a policy that maximizes reward

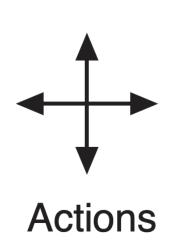
Planning via DP

- Dynamic programming assumes full knowledge of the MDP
- It is used for planning in an MDP
- For prediction:
 - Input: MDP <S, A,T, R, γ > and policy π
 - Output: value function v_{π}
- For control:
 - Input: MDP <S, A,T, R, γ>
 - Output: optimal value function v* and: optimal policy π *

Prediction Example



(a)



3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

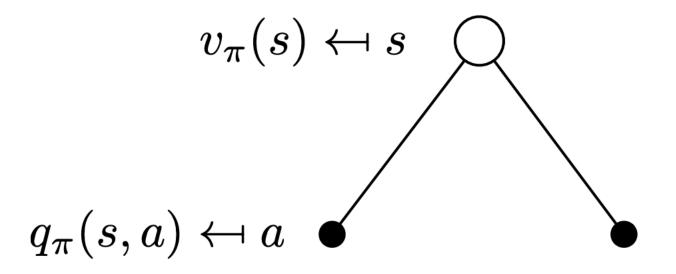
(b)

Bellman Expectation

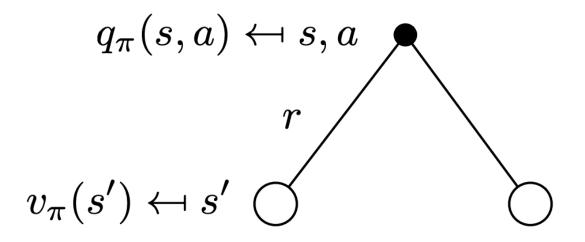
- The state-value function can again be decomposed into immediate reward plus discounted value of successor state, $v_{\pi}(s) = E_{\pi} [R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s]$
- The action-value function can similarly be decomposed, $q_{\pi}(s, a) = E_{\pi} [R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$
- No closed form solution (in general)

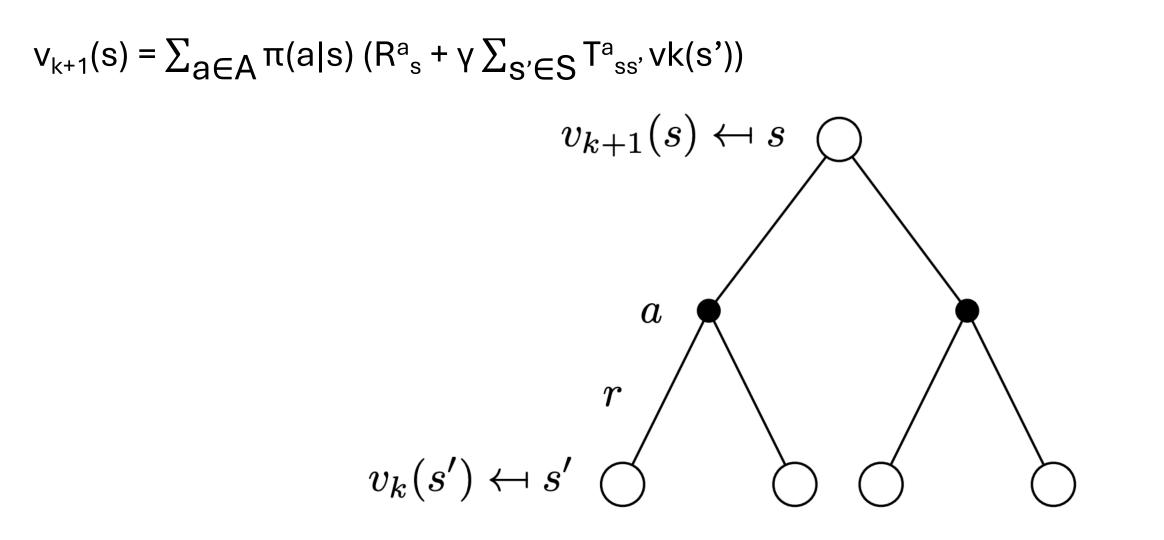
- Problem: evaluate a given policy $\boldsymbol{\pi}$
- Solution: iterative application of Bellman expectation backup $v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_\pi$
- Using synchronous backups,
 - At each iteration k + 1
 - For all states $s \in S$ Update $v_{k+1}(s)$ from $v_k(s')$, where s' is a successor state of s

 $v_{\pi}(s) = \sum_{a \in A} \pi(a|s) q_{\pi}(s,a)$

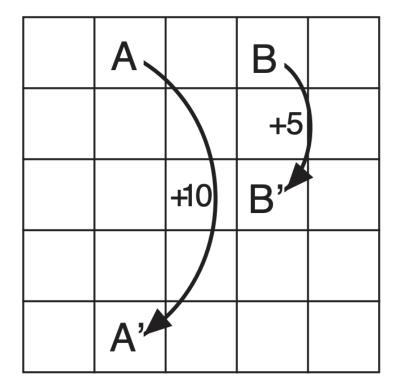


 $q_{\pi}(s,a) = R_s^a + \gamma \sum_{s' \in S} T_{ss'}^a vk(s')$

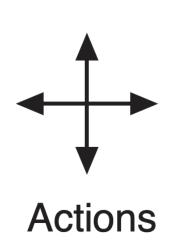




Prediction Example



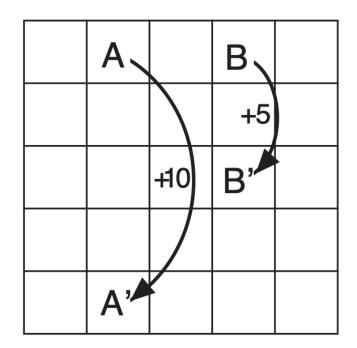
(a)



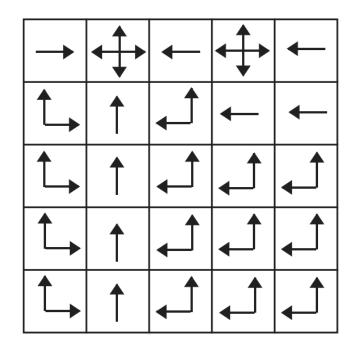
3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

(b)

Control Example



22.0	24.4	22.0	19.4	17.5
19.8	22.0	19.8	17.8	16.0
17.8	19.8	17.8	16.0	14.4
16.0	17.8	16.0	14.4	13.0
14.4	16.0	14.4	13.0	11.7



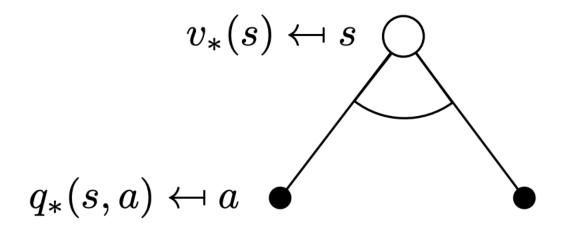
a) gridworld

b) v_*

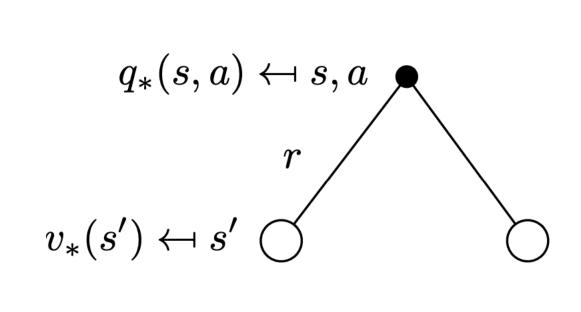
c) π_*

- Optimal state value: $v^*(s) = \max_{\pi} v_{\pi}(s)$
- Optimal action value: $q^*(s,a) = \max_{\pi} q_{\pi}(s,a)$
- Optimal policy: $\pi^*(s) = \operatorname{argmax}_a q^*(s,a)$

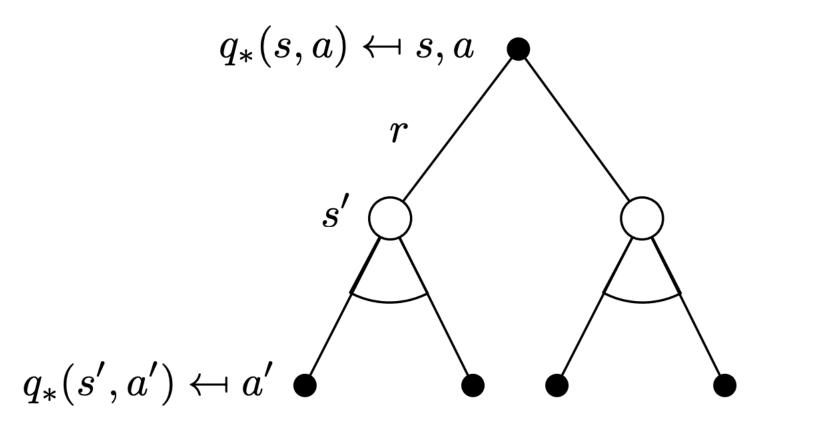
v*(s)= max_aq*(s',a')



 $q^{*}(s,a) = R^{a}_{s} + \gamma \sum_{s' \in S} T^{a}_{ss'} v^{*}(s')$



 $q^{*}(s,a) = R_{s}^{a} + \gamma \sum_{s' \in S} T_{ss'}^{a} \max_{a} q^{*}(s',a')$



- Optimal state value: $v*(s) = \max_{\pi} v_{\pi}(s)$
- Optimal action value: $q*(s,a) = \max_{\pi} q_{\pi}(s,a)$
- Optimal policy: $\pi^*(s) = \operatorname{argmax}_a q^*(s,a)$

•
$$q^*(s,a) = R^a_s + \gamma \sum_{s' \in S} T^a_{ss'} \max_a q^*(s',a')$$

• $v^*(s) = \max_{a \in A} q^*(s, a)$

Policy Iteration

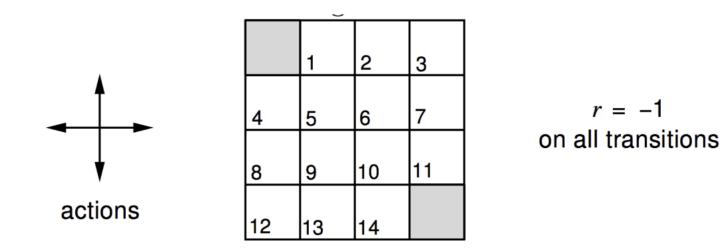
Given a policy $\boldsymbol{\pi}$

- Evaluate the policy $\pi v_{\pi}(s) = E [R_{t+1} + \gamma R_{t+2} + ... | S_t = s]$
- Improve the policy by acting greedily with respect to v_{π} π ' = greedy(v_{\pi})
- Converting back and forth between prediction and control
- Start with random policy, eval it, improve value, improve policy

Value Iteration

- Similar to Policy Iteration but start with random value function, recursively improve it
- Exercise to figure out equations if you start with random value instead of policy

Put it together



- Undiscounted episodic MDP ($\gamma = 1$)
- Nonterminal states 1, ..., 14
- One terminal state (shown twice as shaded squares)
- Actions leading out of the grid leave state unchanged
- Reward is -1 until the terminal state is reached
- Agent follows uniform random policy π(n|·) = π(e|·) = π(s|·) = π(w|·)
 = 0.25

 v_k for the Random Policy

Greedy Policy w.r.t. v_k

random

policy

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

$$k = 0$$

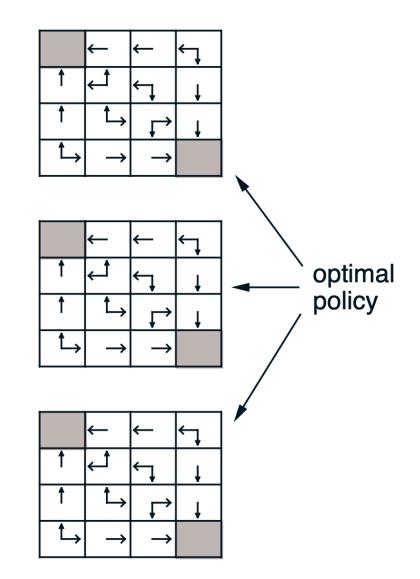
k = 1

,				
	0.0	-1.0	-1.0	-1.0
	-1.0	-1.0	-1.0	-1.0
	-1.0	-1.0	-1.0	-1.0
	-1.0	-1.0	-1.0	0.0

	Ļ	$\stackrel{\bullet}{\longleftrightarrow}$	\Leftrightarrow
1	\leftrightarrow	\leftrightarrow	\leftrightarrow
\longleftrightarrow	\Leftrightarrow	\leftrightarrow	Ļ
\longleftrightarrow	\Leftrightarrow	\rightarrow	

$$k = 2$$

	Ļ	Ļ	$\stackrel{}{\longleftrightarrow}$
1	Ļ	\Leftrightarrow	Ļ
1	${\longleftrightarrow}$	Ļ	Ļ
\Leftrightarrow	\rightarrow	\rightarrow	



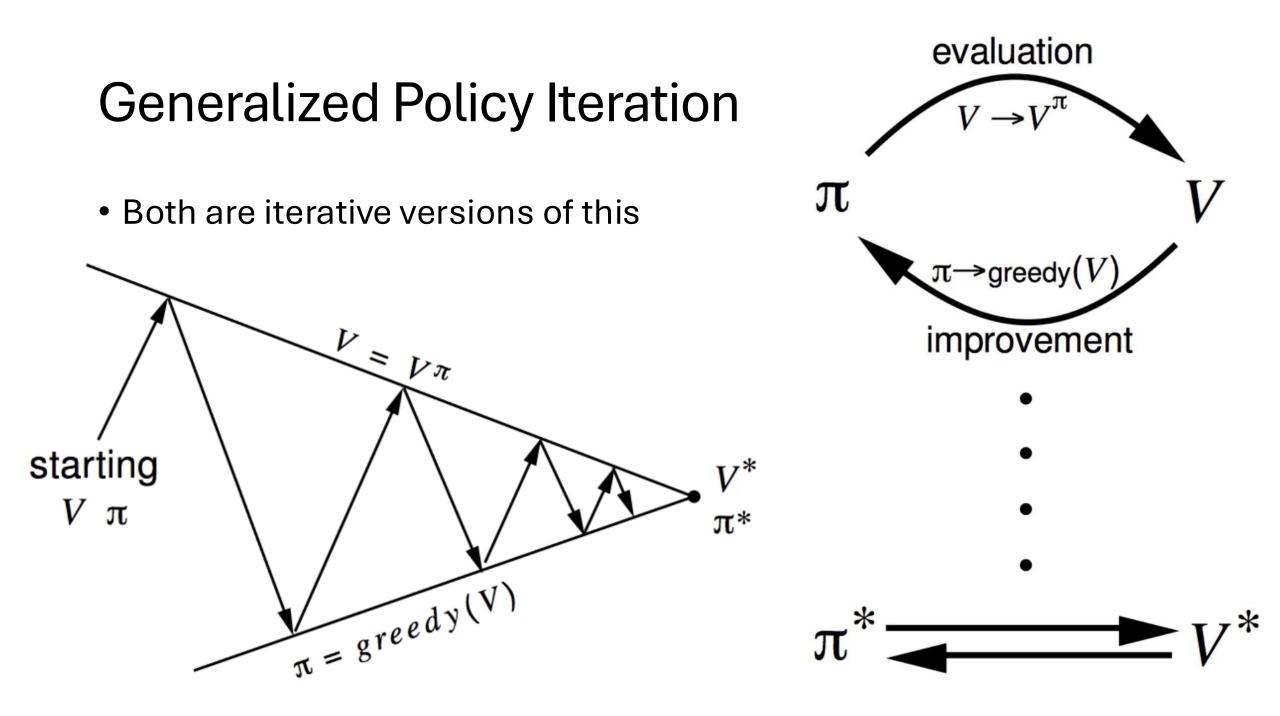
0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

$$k = 3$$

$$k = 10$$

$$k = \infty$$



DP Limitations

- DP uses full-width backups
- For each backup Every successor state and action is considered
- Using knowledge of the MDP transitions and reward function DP is effective for medium-sized problems (millions of states)
- For large problems DP suffers Bellman's curse of dimensionality
- Number of states n = |S| grows exponentially with number of state variables Even one backup can be too expensive

Model Free RL via Sample Backups

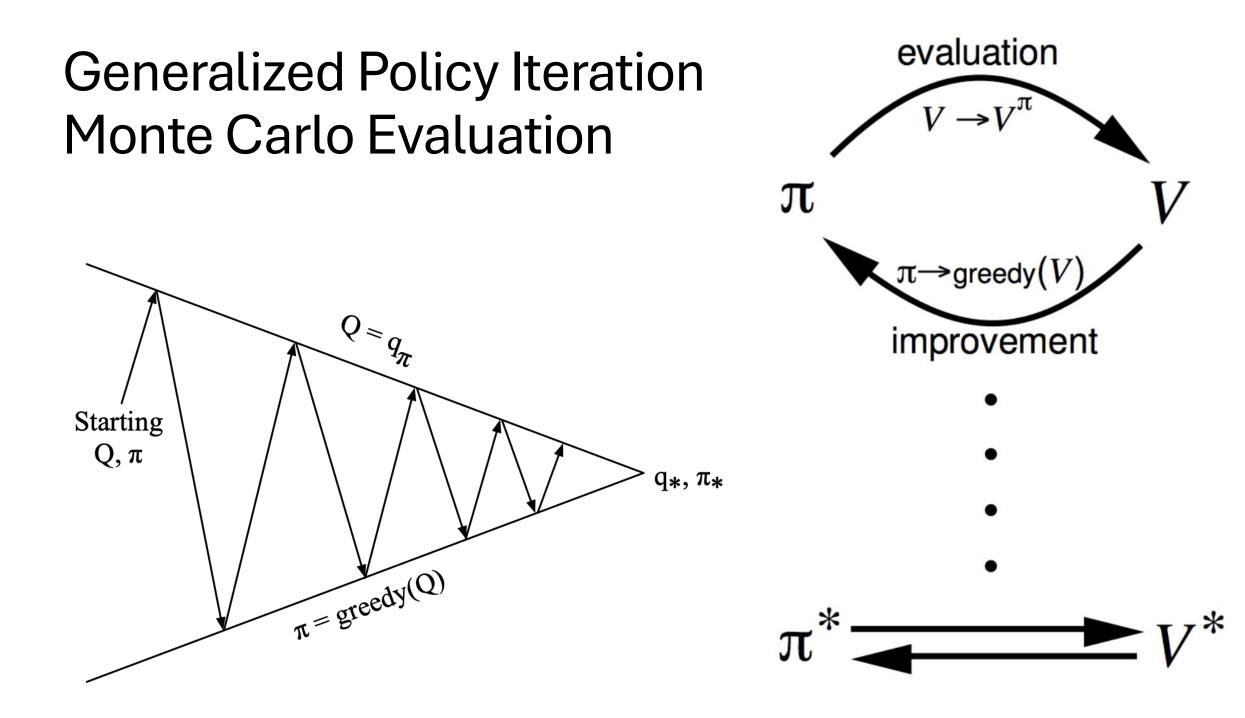
- Model Free RL: optimize value of unknown MDP
- Using sample rewards and sample transitions <S, A, R', S'> Instead of reward function R and transition dynamics T
- Advantages: Model-free: no advance knowledge of MDP required Breaks the curse of dimensionality through sampling
- Cost of backup is constant, independent of n = |S|

Experience Based Learning

- Many real world problems are better suited to being solved by RL as opposed to DP based planning
- All the examples of agents we talked about first class
 - Robots in your home
 - Video games harder than tic tac toe
 - Language

Monte Carlo Control

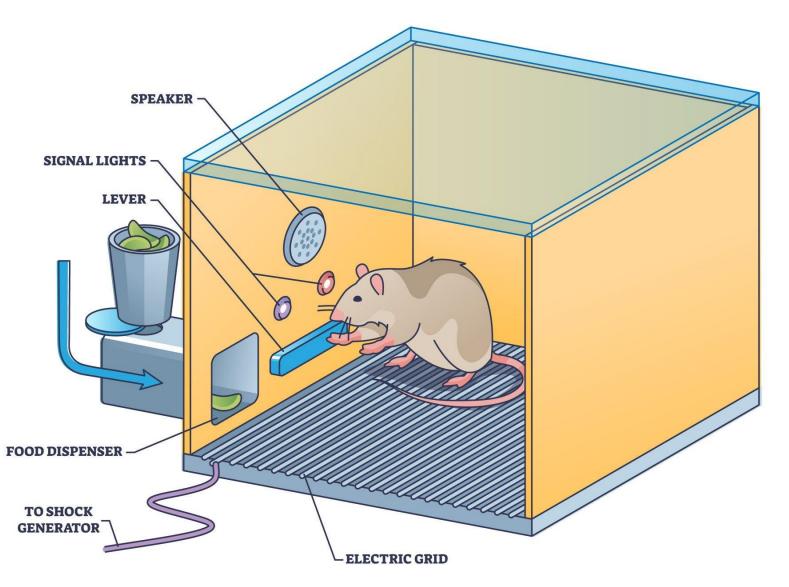
- Greedy policy improvement over V(s) requires model of MDP $\pi'(s) = \operatorname{argmax}_{a \in A} R^{a}_{s} + \gamma \sum_{s' \in S} T^{a}_{ss'} V'(s')$
- Greedy policy improvement over Q(s, a) is model-free π '(s) = argmax_{a \in A}Q(s, a)
- <u>Learn</u> this Q by function approximation using the experiences you've gathered by Monte Carlo sampling



Greedy Policy Improvement Limitations

• Greedy doesn't let you always explore all the actions you need

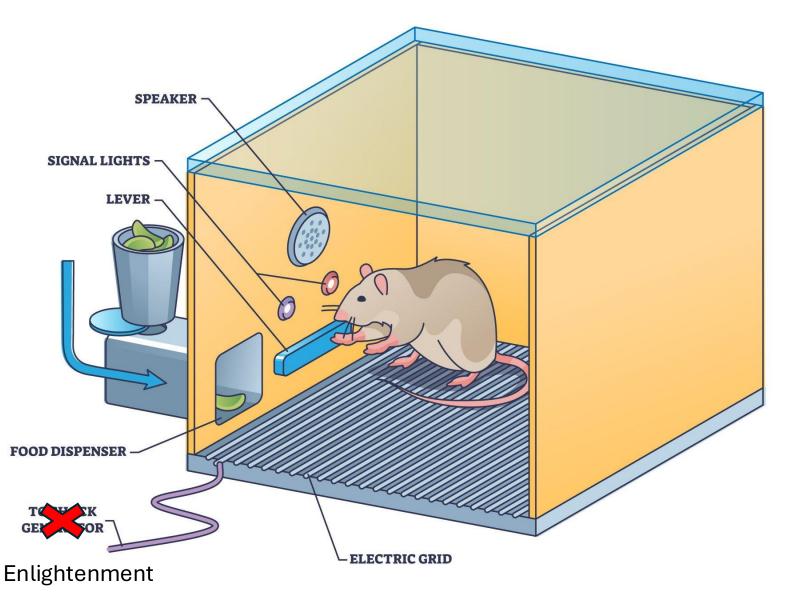
SKINNER BOX



Greedy Policy Improvement Limitations

• Greedy doesn't let you always explore all the actions you need

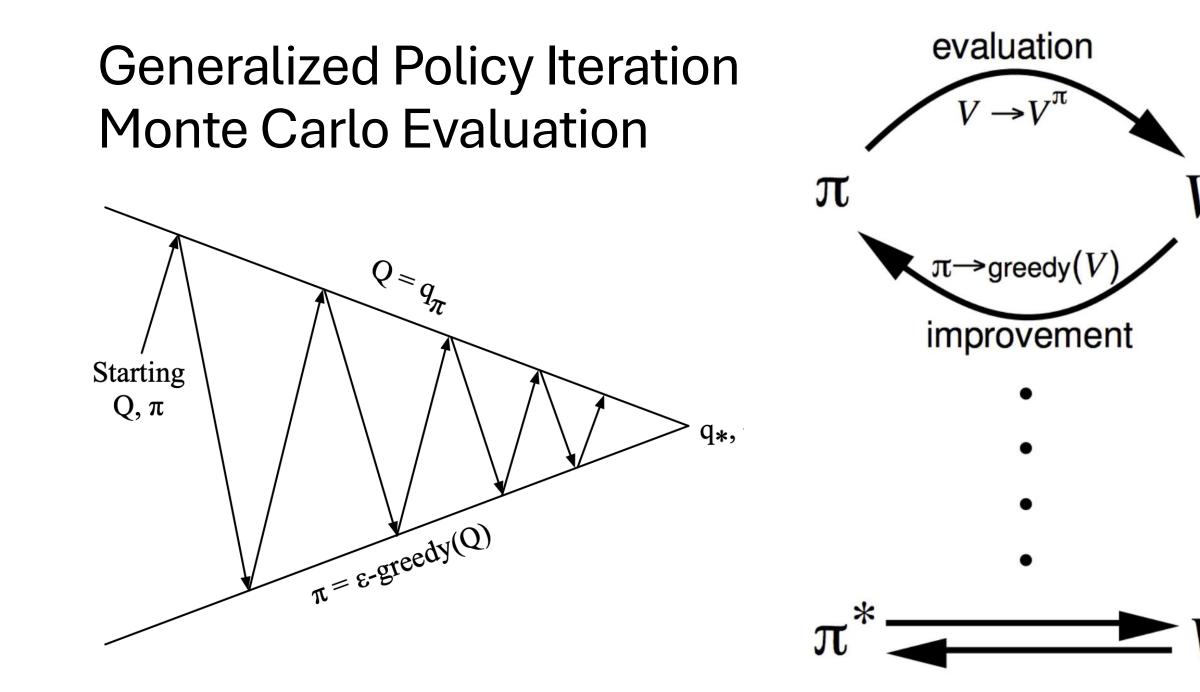
SKINNER BOX

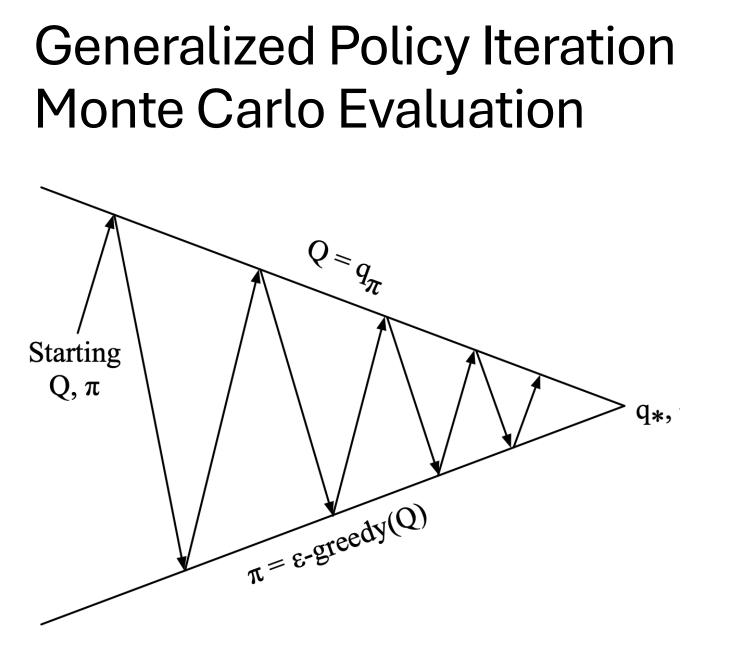


ε-greedy exploration

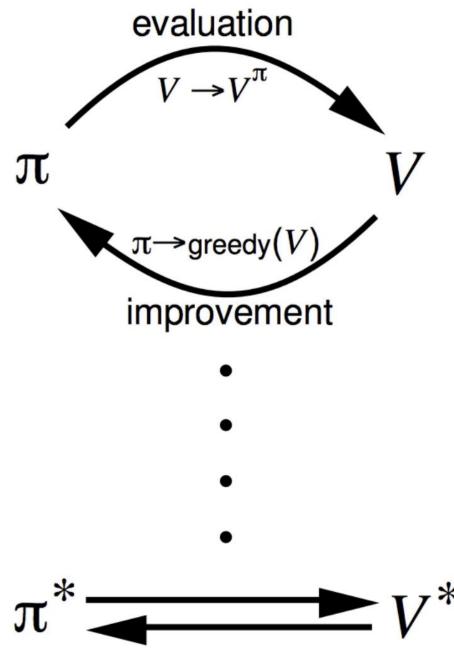
- Simplest idea for ensuring continual exploration
- All m actions are tried with non-zero probability
- With probability 1 choose the greedy action
- With probability choose an action at random

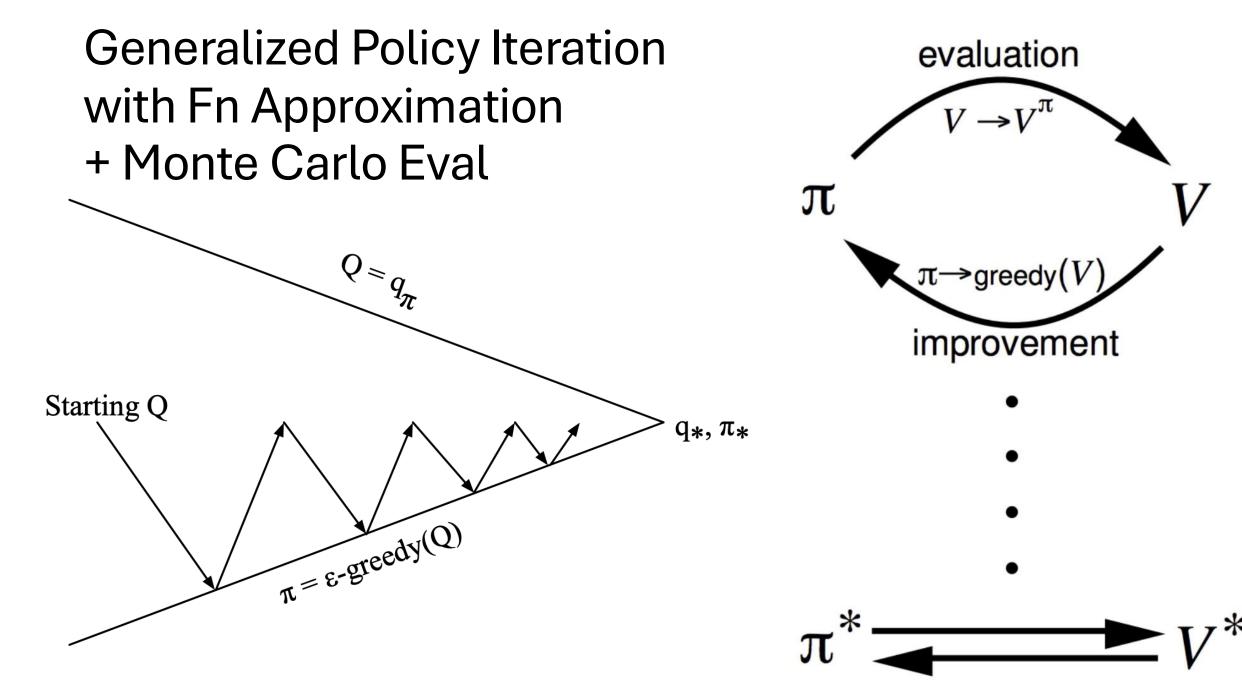
$$\pi(a|s) = \left\{ egin{array}{c} \epsilon/m+1-\epsilon & ext{if } a^* = rgmax \ a\in\mathcal{A} \\ \epsilon/m & ext{otherwise} \end{array}
ight.$$





You can't fully evaluate the entire state space each time





You can't fully evaluate the entire state space each time