
CSE 291 – AI Agents
2/6 – RL and Search Combined

Prithviraj Ammanabrolu

Thanks to David Silver’s DeepMind RL Course and Rich Sutton’s RL
Book. Some slides were adapted form there.

Logistics

• HW 1 Due Tonight
• HW 2 will be released soon
• Project pitch slide decks are due Friday with revisions after

feedback (for all groups presenting Tuesday)

Temporal Difference

• With Monte Carlo, we update the value function from a complete
episode, and so we use the actual accurate discounted return of
this episode.

• With TD Learning, we update the value function from a step, and we
replace Gt, which we don’t know, with an estimated return called
the TD target – a bootstrapping method similar to DP

TD(0) → TD(∞)

Off-policy Learning

• Evaluate target policy π(a|s) to compute vπ(s) or qπ(s, a)
• While following behavior policy µ(a|s)

{S1, A1, R2, ..., ST } ∼ µ
Why is this important?
• Learn from observing humans or other agents
• Re-use experience generated from old policies π1, π2, ..., πt−1

• Learn about optimal policy while following exploratory policy
• Learn about multiple policies while following one policy

Q-Learning

• We now allow both behavior and target policies to improve
• The target policy π is greedy w.r.t. Q(s, a)
• π(St+1) = argmaxa’ Q(St+1, a’)
• The behavior policy µ is e.g. -greedy w.r.t. Q(s, a)
• The Q-learning target then simplifies:
 Rt+1 + γQ(St+1, A 0)
 =Rt+1 + γQ(St+1, argmaxa’ Q(St+1, a’))
 =Rt+1 + maxa’ γQ(St+1, a’)

Value Function Approximation

• So far we have represented value function by a lookup table
• Every state s has an entry V(s)
• Or every state-action pair s, a has an entry Q(s, a)
• Problem with large MDPs:

• There are too many states and/or actions to store in memory
• It is too slow to learn the value of each state individually

• Solution for large MDPs:
• Estimate value function with function approximation
 ොv(s, w) ≈ vπ(s) or ොq(s, a, w) ≈ qπ(s, a)
• Generalize from seen states to unseen states
• Update parameter w using MC or TD learning

Can you do better if you have a Model?

• Everything so far was Model Free
• No model
• Learn value function (and/or policy) from experience

• If you know how the world will change in response to your action
before you do it, can you use that somehow to influence your
actions?

• This is the problem of “given a world model” how to use it.

Model Free vs Model Based RL

• Model-Free RL
• No model
• Learn value function (and/or policy) from experience

• Model-Based RL
• Learn a model from experience
• Plan value function (and/or policy) from model

Sample Based Planning

• A simple but powerful approach to planning
• Use the model only to generate samples
• Sample experience from model
 St+1 ∼ Tη(St+1 | St , At)
 Rt+1 = Rη(Rt+1 | St , At)
• Apply model-free RL to samples, e.g.: Monte-Carlo control Sarsa

Q-learning
• Sample-based planning methods are often more efficient

Simulation Search

• Forward search paradigm using sample-based planning
• Simulate episodes of experience from now with the model
• Apply model-free RL to simulated episodes

Revisit MCTS

MCTS (contd)

• Given a model Mν and a simulation policy π
• For each action a ∈ A

• Simulate K episodes from current (real) state
 st {st , a, Rk

t+1, Sk
t+1, Ak

t+1, ..., Sk
T }K

k=1∼ Mν, π

• Evaluate actions by mean return (Monte-Carlo evaluation)
 Q(st , a) = 1/K σ𝑘=1

𝐾 𝐺𝑡 → qπ(st , a)

• Select current (real) action with maximum value
 at = argmax a∈A Q(st , a)

MCTS Evaluation

• Given a model Mν

• Simulate K episodes from current state st using current simulation
policy π {st , Ak

t, Rk
t+1, Sk

t+1, Ak
t+1, ..., Sk

T }K
k=1∼ Mν, π

• Build a search tree containing visited states and actions
• Evaluate states Q(s, a) by mean return of episodes from s, a
 Q(s, a) = 1 / N(s, a) σ𝑘=1

𝐾 σ𝑢=𝑡
𝑇 𝟏(𝑆𝑢, 𝐴𝑢 = 𝑠, 𝑎)𝐺𝑢→ qπ(s, a)

• After search is finished, select current (real) action with maximum
value in search tree at = argmax a∈A Q(st , a)

MCTS Simulation

• In MCTS, the simulation policy π improves
• Each simulation consists of two phases (in-tree, out-of-tree)

• Tree policy (improves): pick actions to maximize Q(S, A)
• Default policy (fixed): pick actions randomly

• Repeat (each simulation)
• Evaluate states Q(S, A) by Monte-Carlo evaluation
• Improve tree policy, e.g. by − greedy(Q)

• Monte-Carlo control applied to simulated experience
• Converges on the optimal search tree, Q(S, A) → q*(S, A)

Go Case Study

• Usually played on 19x19, also 13x13 or 9x9 board
• Simple rules, complex strategy
• Black and white place down stones alternately
• Surrounded stones are captured and removed
• The player with more territory wins the game

Go Case Study

• How good is a position s?
• Reward function (undiscounted):

• Rt = 0 for all non-terminal steps t < T
• RT = 1 if Black wins
• RT = 0 if White wins

• Policy π = <πB , πW> selects moves for both players, Self Play
• Value function (how good is position s):
 vπ(s) = Eπ [RT | S = s] = P [Black wins | S = s]
 v*(s) = maxπB minπW vπ(s)

TD Search

• Simulate episodes from the current (real) state st
• Estimate action-value function Q(s, a)
• For each step of simulation, update action-values by
 ∆Q(S, A) = α(R + γQ(S', A’) − Q(S, A))
• Select actions based on action-values Q(s, a) e.g. -greedy
• May also use function approximation for Q

AlphaGo

• Same exact MC method as what we just talked about
• Just use neural nets to learn the probabilities using self play and

outcome rewards
• Needed a lot of human games to train the initial value networks
• Also had some hand crafted features to bake in knowledge about

the game

AlphaZero

• Relaxed the constraint of requiring a lot of human data and
constraints up front by just scaling

• Just do pure online RL

Model Free vs Model Based RL

• Model-Free RL
• No model
• Learn value function (and/or policy) from experience

• Model-Based RL
• Learn a model from experience
• Plan value function (and/or policy) from model

What is a Model?

• A model M is a representation of an MDP <S, A,T, R>, parametrized
by η

• We will assume state space S and action space A are known
• So a model M = <Tη, Rη> represents state transitions Tη ≈ T and

rewards Rη ≈ R
 St+1 ∼ Pη(St+1 | St , At)
 Rt+1 = Rη(Rt+1 | St , At)
• Typically assume conditional independence between state

transitions and rewards
 P [St+1, Rt+1 | St , At] = P[St+1 | St , At] P[Rt+1 | St , At]

Learning a Model

• Goal: estimate model Mη from experience {S1, A1, R2, ..., ST}
• This is a supervised learning problem
 S1, A1 → R2, S2
 S2, A2 → R3, S3
 . . . ST−1, AT−1 → RT , ST
• Learning s, a → r is a regression problem
• Learning s, a → s’ is a density estimation problem
• Pick loss function, e.g. mean-squared error, KL divergence, ... Find

parameters η that minimizes empirical loss

Model Based RL

• Pick your fav simulation search algo from before and do planning
with your model

• Key difference here is that the Model has errors, uncertainty
• What does this mean for how many steps you need to take in an

env?

Model Based RL

• Pick your fav simulation search algo from before and do planning
with your model

• Key difference here is that the Model has errors, uncertainty
• It will take a lot longer! (Why?)
• This is the overall concept behind MuZero, simultaneously learn

both model and policy

Models and Simulation and Reality

• Traditionally we consider two sources of experience
• Real experience: Sampled from environment (true MDP)
 S’ ∼ Ta

s,s’

 R = Ra
s

• Simulated experience: Sampled from model (approximate MDP)
 S’ ∼ Tη(S’ | S, A)
 R = Rη(R | S, A)
• What’s the issue with World Models learned inside a simulation?

Pros and Cons of MBRL

• Pros
• Can do all the (self, un) supervised learning tricks to learn from large scale

data
• Can reason about uncertainty

• Cons
• Need model of T first
• Will build estimate of value from that
• Two(+) sources of error

	Slide 1: CSE 291 – AI Agents 2/6 – RL and Search Combined
	Slide 2: Logistics
	Slide 3: Temporal Difference
	Slide 4: TD(0)  TD(∞)
	Slide 5: Off-policy Learning
	Slide 6: Q-Learning
	Slide 7: Value Function Approximation
	Slide 8: Can you do better if you have a Model?
	Slide 9: Model Free vs Model Based RL
	Slide 10: Sample Based Planning
	Slide 11: Simulation Search
	Slide 12: Revisit MCTS
	Slide 13: MCTS (contd)
	Slide 14: MCTS Evaluation
	Slide 15: MCTS Simulation
	Slide 16: Go Case Study
	Slide 17: Go Case Study
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: TD Search
	Slide 24: AlphaGo
	Slide 25: AlphaZero
	Slide 26: Model Free vs Model Based RL
	Slide 27: What is a Model?
	Slide 28: Learning a Model
	Slide 29: Model Based RL
	Slide 30: Model Based RL
	Slide 31: Models and Simulation and Reality
	Slide 32: Pros and Cons of MBRL

