CSE 291 - Al Agents
2/6 — RL and Search Combined

Prithviraj Ammanabrolu

Thanks to David Silver’s DeepMind RL Course and Rich Sutton’s RL
Book. Some slides were adapted form there.

Logistics

HW 1 Due Tonight
HW 2 will be released soon

Project pitch slide decks are due Friday with revisions after
feedback (for all groups presenting Tuesday)

Temporal Difference

» With Monte Carlo, we update the value function from a complete
episode, and so we use the actual accurate discounted return of
this episode.

Monte Carlo: V(St) < V(St) —+ O:[Gt — V(St)]

* With TD Learning, we update the value function from a step, and we
replace G,, which we don’t know, with an estimated return called
the TD target - a bootstrapping method similar to DP

TD Learning: V(St) <— V(St) -+ (l’[Rt-l—l =+ '}’V(St+1) — V(St)]

TD(0) = TD(o°)

V(St) < V(S:) + a|Rip1 + 4V (St41) — V(S

80

T

mm O—o—O—o—O—e—O—e ---
7]

P S

8

a)
W O—e—0O—e—0O—e .- —0

@]
T
g O—e—0O—e—0O—e—0

o
§ O—e—O—e—O

TD(0)

Off-policy Learning

* Evaluate target policy 1t(als) to compute v(s) or g.(s, a)

* While following behavior policy u(als)

{81, A1, R2, coey ST}N l.J

Why is this important?

_earn from observing humans or other agents
Re-use experience generated from old policies my, T, ..., T,
_earn about optimal policy while following exploratory policy

_earn about multiple policies while following one policy

Q-Learning

* We now allow both behavior and target policies to improve
* The target policy tis greedy w.r.t. Q(s, a)
* TU(St4q) = argmax, Q(S;,q, a’)
* The behavior policy p is e.g. -greedy w.r.t. Q(s, a)
* The Q-learning target then simplifies:
Ris1+YQ(Swq, AQ)
=Rir1 + YQ(S4q, argmax, Q(Sy.q, @’))
=Riv1 + MaXxXy, YQ(Siq, @)

Value Function Approximation

* So far we have represented value function by a lookup table
* Every state s has an entry V(s)

* Or every state-action pair s, a has an entry Q(s, a)
* Problem with large MDPs:

* There are too many states and/or actions to store in memory
* |tis too slow to learn the value of each state individually

* Solution for large MDPs:
* Estimate value function with function approximation
V(s, W) 2 vy (s) or (s, a, W) = dq(s, a)
* Generalize from seen states to unseen states
* Update parameter w using MC or TD learning

Can you do better if you have a Model?

* Everything so far was Model Free

* No model
* Learn value function (and/or policy) from experience

* If you know how the world will change in response to your action
before you do it, can you use that somehow to influence your
actions?

* This is the problem of “given a world model” how to use it.

Model Free vs Model Based RL

e Model-Free RL

* No model
* Learn value function (and/or policy) from experience

* Model-Based RL

* Learn a model from experience
* Plan value function (and/or policy) from model

Sample Based Planning

* A simple but powerful approach to planning
* Use the model only to generate samples
* Sample experience from model

Ster ~ Tn(Seaq [Ses Ay

Rir1 = Rp(Rer | St Ay)

* Apply model-free RL to samples, e.g.: Monte-Carlo control Sarsa
Q-learning

* Sample-based planning methods are often more efficient

Simulation Search

* Forward search paradigm using sample-based planning
 Simulate episodes of experience from now with the model
* Apply model-free RL to simulated episodes

Revisit MCTS

SELECTION EXPANSION RoLLouT BACKPROPAGATION

(I ‘

o dL

& Joy
J : ./’\\ \] ﬁ @/k _E /.L

MCTS (contd)

* Given a model M, and a simulation policy 1t

* Foreach actiona € A
* Simulate K episodes from current (real) state

St {St , d, Rkt+1’ SI<t+1’ Akt+1’ ooy SI<T }Kk=1~ Ivlv, T
* Evaluate actions by mean return (Monte-Carlo evaluation)

Q(s,,a)=1/KYx_1 G, > q.(s,, a)
* Select current (real) action with maximum value

a, = argmax ., Q(s;, a)

MCTS Evaluation

* Given a model M,

* Simulate K episodes from current state st using current simulation
pOlicy T[{St ’ Akt, Rkt+‘|, Skt+1, Akt+1, ceey SkT }Kk=‘|~ MV,T[

* Build a search tree containing visited states and actions
* Evaluate states Q(s, a) by mean return of episodes from s, a
Q(s,a)=1/N(s,a) XK_, > _,1(Su, Au = s,a)Gu~> q.(s, a)

* After search is finished, select current (real) action with maximum
value in search tree a, = argmax ;¢ Q(s;, a)

MCTS Simulation

* In MCTS, the simulation policy Tt improves

* Each simulation consists of two phases (in-tree, out-of-tree)
* Tree policy (improves): pick actions to maximize Q(S, A)
* Default policy (fixed): pick actions randomly

* Repeat (each simulation)
* Evaluate states Q(S, A) by Monte-Carlo evaluation
* Improve tree policy, e.g. by — greedy(Q)

* Monte-Carlo control applied to simulated experience
* Converges on the optimal search tree, Q(S, A) > g*(S, A)

Go Case Study

* Usually played on 19x19, also 13x13 or 9x9 board
* Simple rules, complex strategy

* Black and white place down stones alternately

* Surrounded stones are captured and removed

* The player with more territory wins the game

Go Case Study

* How good is a position s?

* Reward function (undiscounted):
* R,=0forall non-terminal stepst<T
* R;= 1if Blackwins
* R;= 0if White wins

* Policy it = <mg, > selects moves for both players, Self Play

* Value function (how good is position s):
v.(s)=E.[R;|S=s]=P[Blackwins | S = s]
V*(S) = maX g MiN_y V(S)

V(s)=2/4=0.5 Current position s

Simulation

Qutcomes

Current state —» ¢ Tree Policy

A

Default Policy

Current state —» &

I Tree Policy
A

Default Policy

Current state —» &«

Tree Policy

L

Default Policy

Current state —» & A

Tree Policy

>

Default Policy

TD Search

* Simulate episodes from the current (real) state s,

* Estimate action-value function Q(s, a)

* For each step of simulation, update action-values by
AQ(S, A) = a(R+YQ(S, A’) - Q(S, A))

* Select actions based on action-values Q(s, a) e.g. -greedy

* May also use function approximation for Q

AlphaGo

* Same exact MC method as what we just talked about

* Just use neural nets to learn the probabilities using self play and
outcome rewards

* Needed a lot of human games to train the initial value networks

* Also had some hand crafted features to bake in knowledge about
the game

AlphaZero

* Relaxed the constraint of requiring a lot of human data and
constraints up front by just scaling

* Just do pure online RL

Model Free vs Model Based RL

e Model-Free RL

* No model
* Learn value function (and/or policy) from experience

* Model-Based RL

 Learn a model from experience
* Planvalue function (and/or policy) from model

What is a Model?

* Amodel M is a representation of an MDP <S, A,T, R>, parametrized
by n

* We will assume state space S and action space A are known

e Soamodel M = <Tn, Rn> represents state transitions Tn ~ T and
rewards Rn= R

St+1 -~ I:)n(St+1 | St ’ At)
R’c+1 = er(Rt+1 | St ’ At)

* Typically assume conditional independence between state
transitions and rewards

P[St1, Rieq | St Al = PISpq | Sty Al PIRwq | Sts Al

Learning a Model

* Goal: estimate model M, from experience {S;, A, R, ..., St}
* This is a supervised learning problem
S, A1 >R, S,
Sz, Ay > R, S
oo, A2 Ry, Sy
* Learning s, a~>ris aregression problem
* Learning s, a > s’ is a density estimation problem

* Pick loss function, e.g. mean-squared error, KL divergence, ... Find
parameters n that minimizes empirical loss

Model Based RL

* Pick your fav simulation search algo from before and do planning
with your model

* Key difference here is that the Model has errors, uncertainty

* What does this mean for how many steps you need to take in an
env?

Model Based RL

* Pick your fav simulation search algo from before and do planning
with your model

* Key difference here is that the Model has errors, uncertainty

* [t will take a lot longer! (Why?)

* This is the overall concept behind MuZero, simultaneously learn
both model and policy

Models and Simulation and Reality

* Traditionally we consider two sources of experience
* Real experience: Sampled from environment (true MDP)
S’ ~ T ¢
R = Ra,
* Simulated experience: Sampled from model (approximate MDP)
S'~T.(S’|S, A)
R=R,(R[S,A)
* What’s the issue with World Models learned inside a simulation?

Pros and Cons of MBRL

* Pros

* Cando all the (self, un) supervised learning tricks to learn from large scale
data

 Canreason about uncertainty

* Cons
* Need model of T first
* Will build estimate of value from that
* Two(+) sources of error

	Slide 1: CSE 291 – AI Agents 2/6 – RL and Search Combined
	Slide 2: Logistics
	Slide 3: Temporal Difference
	Slide 4: TD(0)  TD(∞)
	Slide 5: Off-policy Learning
	Slide 6: Q-Learning
	Slide 7: Value Function Approximation
	Slide 8: Can you do better if you have a Model?
	Slide 9: Model Free vs Model Based RL
	Slide 10: Sample Based Planning
	Slide 11: Simulation Search
	Slide 12: Revisit MCTS
	Slide 13: MCTS (contd)
	Slide 14: MCTS Evaluation
	Slide 15: MCTS Simulation
	Slide 16: Go Case Study
	Slide 17: Go Case Study
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: TD Search
	Slide 24: AlphaGo
	Slide 25: AlphaZero
	Slide 26: Model Free vs Model Based RL
	Slide 27: What is a Model?
	Slide 28: Learning a Model
	Slide 29: Model Based RL
	Slide 30: Model Based RL
	Slide 31: Models and Simulation and Reality
	Slide 32: Pros and Cons of MBRL

