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Thanks to David Silver’s DeepMind RL Course and Rich Sutton’s RL 
Book. Some slides were adapted form there.



Logistics

• HW 1 Due Tonight
• HW 2 will be released soon
• Project pitch slide decks are due Friday with revisions after 

feedback (for all groups presenting Tuesday)



Temporal Difference

• With Monte Carlo, we update the value function from a complete 
episode, and so we use the actual accurate discounted return of 
this episode.

• With TD Learning, we update the value function from a step, and we 
replace Gt, which we don’t know, with an estimated return called 
the TD target – a bootstrapping method similar to DP



TD(0) → TD(∞)



Off-policy Learning

• Evaluate target policy π(a|s) to compute vπ(s) or qπ(s, a) 
• While following behavior policy µ(a|s) 

{S1, A1, R2, ..., ST } ∼ µ 
Why is this important? 
• Learn from observing humans or other agents 
• Re-use experience generated from old policies π1, π2, ..., πt−1 

• Learn about optimal policy while following exploratory policy 
• Learn about multiple policies while following one policy



Q-Learning

• We now allow both behavior and target policies to improve 
• The target policy π is greedy w.r.t. Q(s, a) 
• π(St+1) = argmaxa’ Q(St+1, a’) 
• The behavior policy µ is e.g. -greedy w.r.t. Q(s, a) 
• The Q-learning target then simplifies: 
 Rt+1 + γQ(St+1, A 0 ) 
 =Rt+1 + γQ(St+1, argmaxa’ Q(St+1, a’))
 =Rt+1 + maxa’ γQ(St+1, a’)



Value Function Approximation

• So far we have represented value function by a lookup table 
• Every state s has an entry V(s) 
• Or every state-action pair s, a has an entry Q(s, a) 
• Problem with large MDPs: 

• There are too many states and/or actions to store in memory 
• It is too slow to learn the value of each state individually 

• Solution for large MDPs: 
• Estimate value function with function approximation 
  ොv(s, w) ≈ vπ(s) or ොq(s, a, w) ≈ qπ(s, a) 
• Generalize from seen states to unseen states 
• Update parameter w using MC or TD learning



Can you do better if you have a Model?

• Everything so far was Model Free
• No model 
• Learn value function (and/or policy) from experience 

• If you know how the world will change in response to your action 
before you do it, can you use that somehow to influence your 
actions?

• This is the problem of “given a world model” how to use it.



Model Free vs Model Based RL

• Model-Free RL 
• No model 
• Learn value function (and/or policy) from experience 

• Model-Based RL 
• Learn a model from experience 
• Plan value function (and/or policy) from model



Sample Based Planning

• A simple but powerful approach to planning 
• Use the model only to generate samples 
• Sample experience from model
 St+1 ∼ Tη(St+1 | St , At) 
 Rt+1 = Rη(Rt+1 | St , At) 
• Apply model-free RL to samples, e.g.: Monte-Carlo control Sarsa 

Q-learning 
• Sample-based planning methods are often more efficient



Simulation Search

• Forward search paradigm using sample-based planning 
• Simulate episodes of experience from now with the model 
• Apply model-free RL to simulated episodes



Revisit MCTS



MCTS (contd)

• Given a model Mν and a simulation policy π 
• For each action a ∈ A 

• Simulate K episodes from current (real) state 
 st {st , a, Rk

t+1, Sk
t+1, Ak

t+1, ..., Sk
T }K

k=1∼ Mν, π 

• Evaluate actions by mean return (Monte-Carlo evaluation) 
 Q(st , a) = 1/K σ𝑘=1

𝐾 𝐺𝑡 → qπ(st , a) 

• Select current (real) action with maximum value 
 at = argmax a∈A Q(st , a)



MCTS Evaluation

• Given a model Mν

• Simulate K episodes from current state st using current simulation 
policy π {st , Ak

t, Rk
t+1, Sk

t+1, Ak
t+1, ..., Sk

T }K
k=1∼ Mν, π 

• Build a search tree containing visited states and actions 
• Evaluate states Q(s, a) by mean return of episodes from s, a 
 Q(s, a) = 1 / N(s, a) σ𝑘=1

𝐾 σ𝑢=𝑡
𝑇 𝟏(𝑆𝑢, 𝐴𝑢 = 𝑠, 𝑎)𝐺𝑢→ qπ(s, a) 

• After search is finished, select current (real) action with maximum 
value in search tree at = argmax a∈A Q(st , a)



MCTS Simulation

• In MCTS, the simulation policy π improves 
• Each simulation consists of two phases (in-tree, out-of-tree) 

• Tree policy (improves): pick actions to maximize Q(S, A) 
• Default policy (fixed): pick actions randomly 

• Repeat (each simulation) 
• Evaluate states Q(S, A) by Monte-Carlo evaluation 
• Improve tree policy, e.g. by  − greedy(Q) 

• Monte-Carlo control applied to simulated experience 
• Converges on the optimal search tree, Q(S, A) → q*(S, A)



Go Case Study

• Usually played on 19x19, also 13x13 or 9x9 board 
• Simple rules, complex strategy 
• Black and white place down stones alternately 
• Surrounded stones are captured and removed 
• The player with more territory wins the game



Go Case Study

• How good is a position s? 
• Reward function (undiscounted): 

• Rt = 0 for all non-terminal steps t < T 
• RT =  1 if Black wins
• RT =  0 if White wins 

• Policy π = <πB , πW> selects moves for both players, Self Play 
• Value function (how good is position s): 
 vπ(s) = Eπ [RT | S = s] = P [Black wins | S = s] 
 v*(s) = maxπB minπW vπ(s)













TD Search

• Simulate episodes from the current (real) state st 
• Estimate action-value function Q(s, a) 
• For each step of simulation, update action-values by 
 ∆Q(S, A) = α(R + γQ(S', A’) − Q(S, A)) 
• Select actions based on action-values Q(s, a) e.g. -greedy 
• May also use function approximation for Q



AlphaGo

• Same exact MC method as what we just talked about
• Just use neural nets to learn the probabilities using self play and 

outcome rewards
• Needed a lot of human games to train the initial value networks
• Also had some hand crafted features to bake in knowledge about 

the game



AlphaZero

• Relaxed the constraint of requiring a lot of human data and 
constraints up front by just scaling

• Just do pure online RL



Model Free vs Model Based RL

• Model-Free RL 
• No model 
• Learn value function (and/or policy) from experience 

• Model-Based RL 
• Learn a model from experience 
• Plan value function (and/or policy) from model



What is a Model?

• A model M is a representation of an MDP <S, A,T, R>, parametrized 
by η 

• We will assume state space S and action space A are known 
• So a model M = <Tη, Rη> represents state transitions Tη ≈ T and 

rewards Rη ≈ R 
 St+1 ∼ Pη(St+1 | St , At) 
 Rt+1 = Rη(Rt+1 | St , At) 
• Typically assume conditional independence between state 

transitions and rewards 
 P [St+1, Rt+1 | St , At ] = P[St+1 | St , At ] P[Rt+1 | St , At]



Learning a Model

• Goal: estimate model Mη from experience {S1, A1, R2, ..., ST} 
• This is a supervised learning problem 
 S1, A1 → R2, S2 
 S2, A2 → R3, S3 
 . . . ST−1, AT−1 → RT , ST 
• Learning s, a → r is a regression problem
• Learning s, a → s’ is a density estimation problem 
• Pick loss function, e.g. mean-squared error, KL divergence, ... Find 

parameters η that minimizes empirical loss



Model Based RL

• Pick your fav simulation search algo from before and do planning 
with your model

• Key difference here is that the Model has errors, uncertainty
• What does this mean for how many steps you need to take in an 

env?



Model Based RL

• Pick your fav simulation search algo from before and do planning 
with your model

• Key difference here is that the Model has errors, uncertainty
• It will take a lot longer! (Why?)
• This is the overall concept behind MuZero, simultaneously learn 

both model and policy 



Models and Simulation and Reality

• Traditionally we consider two sources of experience 
• Real experience: Sampled from environment (true MDP) 
 S’ ∼ Ta

s,s’ 

 R = Ra
s 

• Simulated experience: Sampled from model (approximate MDP) 
 S’ ∼ Tη(S’ | S, A) 
 R = Rη(R | S, A)
• What’s the issue with World Models learned inside a simulation?



Pros and Cons of MBRL

• Pros
• Can do all the (self, un) supervised learning tricks to learn from large scale 

data
• Can reason about uncertainty

• Cons
• Need model of T first
• Will build estimate of value from that
• Two(+) sources of error
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