
CSE 190 – Intro to Deep RL
5/1 – RL and Search

Combined
Prithviraj Ammanabrolu and Bosung Kim

Thanks to David Silver’s DeepMind RL Course and Rich Sutton’s
RL Book. Some slides were adapted form there.

Logistics

• Project proposal due tonight

Lecture 5/1

• RL and Search Combined
• Model Based RL
• PyTorch Review

Temporal Difference

• With Monte Carlo, we update the value function from a
complete episode, and so we use the actual accurate
discounted return of this episode.

• With TD Learning, we update the value function from a step,
and we replace Gt , which we don’t know, with an estimated
return called the TD target – a bootstrapping method
similar to DP

Bosung Kim

Bosung Kim

TD(0) 🡪 TD(∞)

Off-policy Learning

• Evaluate target policy π(a|s) to compute vπ(s) or qπ(s, a)
• While following behavior policy µ(a|s)

{S1, A1, R2, ..., ST } ∼ µ
Why is this important?
• Learn from observing humans or other agents
• Re-use experience generated from old policies π1, π2, ..., πt−1
• Learn about optimal policy while following exploratory policy
• Learn about multiple policies while following one policy

Q-Learning

• We now allow both behavior and target policies to improve
• The target policy π is greedy w.r.t. Q(s, a)
• π(St+1) = argmaxa’ Q(St+1, a’)
• The behavior policy µ is e.g. -greedy w.r.t. Q(s, a)
• The Q-learning target then simplifies:

Rt+1 + γQ(St+1, A 0)
=Rt+1 + γQ(St+1, argmaxa’ Q(St+1, a’))
=Rt+1 + maxa’ γQ(St+1, a’)

Bosung Kim

Bosung Kim

Bosung Kim

Bosung Kim

Bosung Kim

Bosung Kim

Bosung Kim

Value Function Approximation

•

Can you do better if you have a Model?

• Everything so far was Model Free
• No model
• Learn value function (and/or policy) from experience

• If you know how the world will change in response to your
action before you do it, can you use that somehow to influence
your actions?

• This is the problem of “given a world model” how to use it.

Bosung Kim

Bosung Kim

Model Free vs Model Based RL

• Model-Free RL
• No model
• Learn value function (and/or policy) from experience

• Model-Based RL
• Learn a model from experience
• Plan value function (and/or policy) from model

Bosung Kim

Bosung Kim

Bosung Kim

Bosung Kim

Bosung Kim

Bosung Kim

Bosung Kim

Bosung Kim

Bosung Kim

Bosung Kim

Bosung Kim

Bosung Kim

Bosung Kim

Bosung Kim

Sample Based Planning

• A simple but powerful approach to planning
• Use the model only to generate samples
• Sample experience from model

St+1 ∼ Tη(St+1 | St , At)
Rt+1 = Rη(Rt+1 | St , At)

• Apply model-free RL to samples, e.g.: Monte-Carlo control
Sarsa Q-learning

• Sample-based planning methods are often more efficient

Bosung Kim

Bosung Kim

Bosung Kim

Bosung Kim

Simulation Search

• Forward search paradigm using sample-based planning
• Simulate episodes of experience from now with the model
• Apply model-free RL to simulated episodes

Revisit MCTS

MCTS (contd)

•

MCTS Evaluation

•

Bosung Kim

MCTS Simulation

• In MCTS, the simulation policy π improves
• Each simulation consists of two phases (in-tree, out-of-tree)

• Tree policy (improves): pick actions to maximize Q(S, A)
• Default policy (fixed): pick actions randomly

• Repeat (each simulation)
• Evaluate states Q(S, A) by Monte-Carlo evaluation
• Improve tree policy, e.g. by − greedy(Q)

• Monte-Carlo control applied to simulated experience
• Converges on the optimal search tree, Q(S, A) → q*(S, A)

Go Case Study

• Usually played on 19x19, also 13x13 or 9x9 board
• Simple rules, complex strategy
• Black and white place down stones alternately
• Surrounded stones are captured and removed
• The player with more territory wins the game

Go Case Study

• How good is a position s?
• Reward function (undiscounted):

• Rt = 0 for all non-terminal steps t < T
• RT = 1 if Black wins
• RT = 0 if White wins

• Policy π = <πB , πW> selects moves for both players, Self Play
• Value function (how good is position s):

vπ(s) = Eπ [RT | S = s] = P [Black wins | S = s]
v*(s) = maxπB minπW vπ(s)

TD Search

• Simulate episodes from the current (real) state st
• Estimate action-value function Q(s, a)
• For each step of simulation, update action-values by

∆Q(S, A) = α(R + γQ(S', A’) − Q(S, A))
• Select actions based on action-values Q(s, a) e.g. -greedy
• May also use function approximation for Q

AlphaGo

• Same exact MC method as what we just talked about
• Just use neural nets to learn the probabilities using self play and
outcome rewards

• Needed a lot of human games to train the initial value networks
• Also had some hand crafted features to bake in knowledge
about the game

Bosung Kim

AlphaZero

• Relaxed the constraint of requiring a lot of human data and
constraints up front by just scaling

• Just do pure online RL

Model Free vs Model Based RL

• Model-Free RL
• No model
• Learn value function (and/or policy) from experience

• Model-Based RL
• Learn a model from experience
• Plan value function (and/or policy) from model

What is a Model?

• A model M is a representation of an MDP <S, A,T, R>,
parametrized by η

• We will assume state space S and action space A are known
• So a model M = <Tη, Rη> represents state transitions Tη ≈ T and
rewards Rη ≈ R

St+1 ∼ Pη(St+1 | St , At)
Rt+1 = Rη(Rt+1 | St , At)

• Typically assume conditional independence between state
transitions and rewards

P [St+1, Rt+1 | St , At] = P[St+1 | St , At] P[Rt+1 | St , At]

Learning a Model

• Goal: estimate model Mη from experience {S1, A1, R2, ..., ST}
• This is a supervised learning problem

S1, A1 → R2, S2
S2, A2 → R3, S3
. . . ST−1, AT−1 → RT , ST

• Learning s, a → r is a regression problem
• Learning s, a → s’ is a density estimation problem
• Pick loss function, e.g. mean-squared error, KL divergence, ...
Find parameters η that minimizes empirical loss

Bosung Kim

Bosung Kim

Model Based RL

• Pick your fav simulation search algo from before and do
planning with your model

• Key difference here is that the Model has errors, uncertainty
• What does this mean for how many steps you need to take in
an env?

Model Based RL

• Pick your fav simulation search algo from before and do
planning with your model

• Key difference here is that the Model has errors, uncertainty
• It will take a lot longer! (Why?)
• This is the overall concept behind MuZero, simultaneously learn
both model and policy

• work well in enviroments where we don’t know the true dynamics
• e.g., video games, robotics, or real-world systems.

Models and Simulation and Reality

• Traditionally we consider two sources of experience
• Real experience: Sampled from environment (true MDP)

S’ ∼ Ta
s,s’

R = Ra
s

• Simulated experience: Sampled from model (approximate MDP)
S’ ∼ Tη(S’ | S, A)
R = Rη(R | S, A)

• What’s the issue with World Models learned inside a simulation?

Pros and Cons of MBRL

• Pros
• Can do all the (self, un) supervised learning tricks to learn from large

scale data
• Can reason about uncertainty

• Cons
• Need model of T first
• Will build estimate of value from that
• Two(+) sources of error

• error in your model
• error in your value estimation that builds on top of the model

PyTorch Review

Neural Networks with PyTorch

PyTorch is a popular deep learning framework used for building
neural networks

Matrix Multiplication

Python List Numpy PyTorch

Neural Networks with PyTorch

PyTorch is a popular deep learning framework used for building
neural networks

PyTorch uses the nn.Module class to define models

nn.Linear(): Linear transformation

y = xW + b

Bosung Kim

Neural Networks with PyTorch

PyTorch is a popular deep learning framework used for building
neural networks

PyTorch uses the nn.Module class to define models

forward(): how input flows through
the network

DQN with PyTorch

forward(): how input flows through the network

Training loop

Steps to train a model:

1. model
2. loss function
3. optimizer
4. loop over epochs and batches

optimizer.zero_grad(): reset gradients
loss.backward(): compute gradients
optimizer.steps(): update weights

Training DQN

Bosung Kim

Bosung Kim

Training DQN

optimizer.zero_grad(): reset gradients
loss.backward(): compute gradients
optimizer.steps(): update weights

