
CSE 190 – Intro to Deep RL
5/1 – RL and Search 

Combined
Prithviraj Ammanabrolu and Bosung Kim

Thanks to David Silver’s DeepMind RL Course and Rich Sutton’s 
RL Book. Some slides were adapted form there.



Logistics

• Project proposal due tonight 



Lecture 5/1

• RL and Search Combined
• Model Based RL
• PyTorch Review



Temporal Difference

• With Monte Carlo, we update the value function from a 
complete episode, and so we use the actual accurate 
discounted return of this episode.

• With TD Learning, we update the value function from a step, 
and we replace Gt , which we don’t know, with an estimated 
return called the TD target – a bootstrapping method 
similar to DP
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TD(0) 🡪 TD(∞)



Off-policy Learning

• Evaluate target policy π(a|s) to compute vπ(s) or qπ(s, a) 
• While following behavior policy µ(a|s) 

{S1, A1, R2, ..., ST } ∼ µ 
Why is this important? 
• Learn from observing humans or other agents 
• Re-use experience generated from old policies π1, π2, ..., πt−1 
• Learn about optimal policy while following exploratory policy 
• Learn about multiple policies while following one policy



Q-Learning

• We now allow both behavior and target policies to improve 
• The target policy π is greedy w.r.t. Q(s, a) 
• π(St+1) = argmaxa’ Q(St+1, a’) 
• The behavior policy µ is e.g. -greedy w.r.t. Q(s, a) 
• The Q-learning target then simplifies: 

Rt+1 + γQ(St+1, A 0 ) 
=Rt+1 + γQ(St+1, argmaxa’ Q(St+1, a’))
=Rt+1 + maxa’ γQ(St+1, a’)
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Value Function Approximation

•  



Can you do better if you have a Model?

• Everything so far was Model Free
• No model 
• Learn value function (and/or policy) from experience 

• If you know how the world will change in response to your 
action before you do it, can you use that somehow to influence 
your actions?

• This is the problem of “given a world model” how to use it.
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Model Free vs Model Based RL

• Model-Free RL 
• No model 
• Learn value function (and/or policy) from experience 

• Model-Based RL 
• Learn a model from experience 
• Plan value function (and/or policy) from model
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Sample Based Planning

• A simple but powerful approach to planning 
• Use the model only to generate samples 
• Sample experience from model

St+1 ∼ Tη(St+1 | St , At) 
Rt+1 = Rη(Rt+1 | St , At) 

• Apply model-free RL to samples, e.g.: Monte-Carlo control 
Sarsa Q-learning 

• Sample-based planning methods are often more efficient
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Simulation Search

• Forward search paradigm using sample-based planning 
• Simulate episodes of experience from now with the model 
• Apply model-free RL to simulated episodes



Revisit MCTS



MCTS (contd)

•  



MCTS Evaluation

•  
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MCTS Simulation

• In MCTS, the simulation policy π improves 
• Each simulation consists of two phases (in-tree, out-of-tree) 

• Tree policy (improves): pick actions to maximize Q(S, A) 
• Default policy (fixed): pick actions randomly 

• Repeat (each simulation) 
• Evaluate states Q(S, A) by Monte-Carlo evaluation 
• Improve tree policy, e.g. by  − greedy(Q) 

• Monte-Carlo control applied to simulated experience 
• Converges on the optimal search tree, Q(S, A) → q*(S, A)



Go Case Study

• Usually played on 19x19, also 13x13 or 9x9 board 
• Simple rules, complex strategy 
• Black and white place down stones alternately 
• Surrounded stones are captured and removed 
• The player with more territory wins the game



Go Case Study

• How good is a position s? 
• Reward function (undiscounted): 

• Rt = 0 for all non-terminal steps t < T 
• RT =  1 if Black wins
• RT =  0 if White wins 

• Policy π = <πB , πW> selects moves for both players, Self Play 
• Value function (how good is position s): 

vπ(s) = Eπ [RT | S = s] = P [Black wins | S = s] 
v*(s) = maxπB minπW vπ(s)













TD Search

• Simulate episodes from the current (real) state st 
• Estimate action-value function Q(s, a) 
• For each step of simulation, update action-values by 

∆Q(S, A) = α(R + γQ(S', A’) − Q(S, A)) 
• Select actions based on action-values Q(s, a) e.g. -greedy 
• May also use function approximation for Q



AlphaGo

• Same exact MC method as what we just talked about
• Just use neural nets to learn the probabilities using self play and 
outcome rewards

• Needed a lot of human games to train the initial value networks
• Also had some hand crafted features to bake in knowledge 
about the game
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AlphaZero

• Relaxed the constraint of requiring a lot of human data and 
constraints up front by just scaling

• Just do pure online RL



Model Free vs Model Based RL

• Model-Free RL 
• No model 
• Learn value function (and/or policy) from experience 

• Model-Based RL 
• Learn a model from experience 
• Plan value function (and/or policy) from model



What is a Model?

• A model M is a representation of an MDP <S, A,T, R>, 
parametrized by η 

• We will assume state space S and action space A are known 
• So a model M = <Tη, Rη> represents state transitions Tη ≈ T and 
rewards Rη ≈ R 

St+1 ∼ Pη(St+1 | St , At) 
Rt+1 = Rη(Rt+1 | St , At) 

• Typically assume conditional independence between state 
transitions and rewards 

P [St+1, Rt+1 | St , At ] = P[St+1 | St , At ] P[Rt+1 | St , At]



Learning a Model

• Goal: estimate model Mη from experience {S1, A1, R2, ..., ST} 
• This is a supervised learning problem 

S1, A1 → R2, S2 
S2, A2 → R3, S3 
. . . ST−1, AT−1 → RT , ST 

• Learning s, a → r is a regression problem
• Learning s, a → s’ is a density estimation problem 
• Pick loss function, e.g. mean-squared error, KL divergence, ... 
Find parameters η that minimizes empirical loss
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Model Based RL

• Pick your fav simulation search algo from before and do 
planning with your model

• Key difference here is that the Model has errors, uncertainty
• What does this mean for how many steps you need to take in 
an env?



Model Based RL

• Pick your fav simulation search algo from before and do 
planning with your model

• Key difference here is that the Model has errors, uncertainty
• It will take a lot longer! (Why?)
• This is the overall concept behind MuZero, simultaneously learn 
both model and policy 

• work well in enviroments where we don’t know the true dynamics
• e.g., video games, robotics, or real-world systems.



Models and Simulation and Reality

• Traditionally we consider two sources of experience 
• Real experience: Sampled from environment (true MDP) 

S’ ∼ Ta
s,s’ 

R = Ra
s 

• Simulated experience: Sampled from model (approximate MDP) 
S’ ∼ Tη(S’ | S, A) 
R = Rη(R | S, A)

• What’s the issue with World Models learned inside a simulation?



Pros and Cons of MBRL

• Pros
• Can do all the (self, un) supervised learning tricks to learn from large 

scale data
• Can reason about uncertainty

• Cons
• Need model of T first
• Will build estimate of value from that
• Two(+) sources of error

• error in your model
• error in your value estimation that builds on top of the model



PyTorch Review



Neural Networks with PyTorch

PyTorch is a popular deep learning framework used for building 
neural networks

Matrix Multiplication

Python List Numpy PyTorch



Neural Networks with PyTorch

PyTorch is a popular deep learning framework used for building 
neural networks

PyTorch uses the nn.Module class to define models

nn.Linear(): Linear transformation

y = xW + b
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Neural Networks with PyTorch

PyTorch is a popular deep learning framework used for building 
neural networks

PyTorch uses the nn.Module class to define models

forward(): how input flows through 
the network



DQN with PyTorch

forward(): how input flows through the network



Training loop

Steps to train a model:

1. model
2. loss function
3. optimizer
4. loop over epochs and batches

optimizer.zero_grad(): reset gradients
loss.backward(): compute gradients
optimizer.steps(): update weights



Training DQN

Bosung Kim

Bosung Kim



Training DQN

optimizer.zero_grad(): reset gradients
loss.backward(): compute gradients
optimizer.steps(): update weights




