CSE 190 - Intro to Deep RL
Classical Control,
Pre-deep Learning

Prithviraj Ammanabrolu

Thanks to David Silver’s DeepMind RL Course and Sheila Mclllraith’s
Planning Course at Uofl. Some slides were adapted form there.

Logistics

For project proposals
* What task you’re doing

* What env you intend to use? Are you making a sim yourself?
* What are time estimates for how hard that would be

* Why is this interesting? If you make an agent in this env, who will care?
* Initial ideas on how to solve it (what will you do if X LLM doesn’t work?)

Generally speaking the presentation will not be graded, but we will give
feedback and expect a revised proposal slide deck to be submitted by
the end of the week. That will be graded.

Forward Search

* Some deterministic implementations of forward search:
* breadth-first search
* depth-first search
* best-first search (e.g., A¥)
* dreedy search

* Breadth-first and best-first search are sound and complete But they
usually aren’t practical, requiring too much memory

* Memory requirementis exponential in the length of the solution

* In practice, more likely to use depth-first search or greedy search
* Worst-case memory requirement is linear in the length of the solution
* In general, sound but not complete
* But classical planning has only finitely many states
* Thus, can make depth-first search complete by doing loop-checking

Backward Search

* For forward search, we started at the initial state and computed
state transitions
* hew state =T(s,a)

* For backward search, we start at the goal and compute inverse
state transitions
* new set of subgoals =T'(g,a)

* To define T'(g,a), must first define relevance: An action a is
relevant for a goal g if
* a makes at least one of g’s literals true, g n effects(a) # @

* a does not make any of g’s literals false, g + n effects —(a) =@ and g- n
effects+(a)=0

Total Order and Partial Order Plans

Partial-Order Plan: Total-Order Plans:
Start Start Start Start Start Start Start
/ \ Right | [Right Left Left Right Left
Sock Sock Sock Sock Sock Sock
Left Right
Sock Sock * ‘ * * * *
Left Left Right Right Right Left
Sock Sock Sock Sock Shoe Shoe
LeftSockOn RightSockOn + * * * * *
: Right Left Right Left Left Right
Left Right
Shoe SLgoe Sh+oe Sh:e Shfe Sh+oe So;:k So+ck
Left Right Left Right Left Right
Shoe Shoe Shoe Shoe Shoe Shoe
LeftShoeOn, RightShoeOn + * * + * *
Finish Finish Finish Finish Finish Finish Finish

Monte Carlo Tree Search

* 4 phases of building out and simulating paths along a search tree

* Various forms of this used in everything from Alpha Zero to
modern LLM inference

* For arbitrary problem with start state s;and actions a;

e All states have attributes: ()
* Total simulation reward Q(s) and /.\

* Total no. of visits N(s) ay

, VAR
(—4\/ ,/'—"\: >’_‘\
_/ U

Improvements to MCTS Components

* Improvements are possible for each of the parts | talked about

* Think about that it would take to improve selection / expansion
phases

Upper Confidence Trees (UCT)

* A way of improving the selection phase by treating selection as a
multi-arm bandit problem: which possible action to select that
maximizes the possible payout (reward) in the future

In N (v)
N(v;) N (v;)

UCT(’U,I;, ’U) —

Upper Confidence Trees (UCT)

* A way of improving the selection phase by treating selection as a
multi-arm bandit problem: which possible action to select that
maximizes the possible payout (reward) in the future

Exploit

Upper Confidence Trees (UCT)

* A way of improving the selection phase by treating selection as a
multi-arm bandit problem: which possible action to select that
maximizes the possible payout (reward) in the future

Q(’Uz')

UCT(’UZ',’U) - N(’Uz) |

Exploit Explore

Why Reinforcement Learning?

* Reinforcement Learning:
* The environment is initially unknown
* The agent interacts with the environment
* The agentimproves its policy

* Planning:
* Amodel of the environmentis known

* The agent performs computations with its model (without any external
interaction)

* The agent improves its policy a.k.a. deliberation, reasoning, introspection,
pondering, thought, search

Origins of RL

Engineering

Computer Science

Opti geward
ontro- \// Syste
» ”I“‘i"l [}
/4 .
Dperations : :

Neuroscience

Psychology

Value Function

RL Agent
Taxonomy

Terminology

* Policy: agent’s behavior function
* Finding optimal policy known as the control problem

* Value function: how good is each state and/or action
* Finding optimal value function is known as the prediction problem

* Model: agent’s representation of the environment

More Terminology on Types of RL

* Model free < will build up to today
* Model based

* On Policy €< will build up to today

* Learn directly from your experiences “on the job”

* Off policy

e Learn from someone else’s behavior

Markov Decision Process

RH—I

SI+1

Environment

~

action
A,

Formal MDP Definition

A Markov Decision Process is a tuple <S, AT, R, y>
e Sis afinite set of states
e Ais a finite set of actions

* T is a state transition probability matrix,
TP =P[Si1=5"|S;=s, A =48]

* Ris areward function, R8, =E[R,| S;=s, A, = a]
* vis adiscount factory € [0, 1].

Returns and Discounting

* The return G; is the total discounted reward from time-step t.
Gy = Req * YRz * oo = o YR Lk

* The value of receiving reward R after k + 1 time-steps is YR

* y~=0 is “myopic”, y~=1 is “far-sighted”

* Why discount?
* Mathematically convenient, avoids infinite returns

* Animal/human/investment banker’s behavior shows preference for
immediate reward

Formal Definition of Policy

* Distribution of action over states: mt(a|s) =P [A,=a | S; = S]

* Policy depends only on current state not history, this is the Markov
oroperty bit of MDP (how do people get around this for cases
where history does matter)

* Theorem (abridged): There always exists an optimal policy for a
given finite MDP. It follow the optimal value function.

Formal Definition of Value Function

* State value: expected return starting from state s, and then
following policy 1t
* Vr(S) = Er [Gi | S = s]

* Action value: is the expected return starting from state s, taking
action a, and then following policy Tt
* g.(s,a)=E [G;]|S;=s, A =a]

Dynamic Programming

* Building up to RL first requires understanding Dynamic
Programming

* Dynamic sequential or temporal component to the problem
Programming optimizing a “program?”, i.e. a policy

* A method for solving complex problems by breaking them down

Into subproblems
* Solve the subproblems - Combine solutions to subproblems

When to use DP

Dynamic Programming is a very general solution method for problems
which have two properties:

* Optimal substructure:

* Principle of optimality applies

* Optimal solution can be decomposed into subproblems
* Overlapping subproblems:

* Subproblems recur many times
e Solutions can be cached and reused

* Markov decision processes satisfy both properties Bellman equation
gives recursive decomposition Value function stores and reuses
solutions

Prediction vs Control

Two problems in RL

* Prediction is the problem of evaluating how good any given state is
for getting rewards given a policy

* Controlis the problem of selecting actions that give you a policy
that maximizes reward

Planning via DP

* Dynamic programming assumes full knowledge of the MDP
* |tis used for planning in an MDP

* For prediction:
* Input: MDP <§, A,T, R, y> and policy 1t
* Output: value function v,

* For control:
* Input: MDP <S§, A,T, R, y>
* Output: optimalvalue function v+ and: optimal policy Tt

Prediction Example

Al |B.
.
0| | B’
AKX

<

A

\/

>

Actions

3.3

8.8

4.4

5.3

1.5

1.5

3.0

2.3

1.9

0.5

0.1

0.7

0.7

0.4

-0.4

-1.0

-0.4

-0.4

-0.6

-1.2

-1.9

-1.3

-1.2

1.4

-2.0

(b)

Bellman Expectation

* The state-value function can again be decomposed into
Immediate reward plus discounted value of successor state,
Vr(S) = B [Resq + YWi(Spiq) | Sy = 8]

* The action-value function can similarly be decomposed,
dn(S, @) = B [Req + YA(Sii1, Apg) [S =8, A = a]

* No closed form solution (in general)

Policy Evaluation

* Problem: evaluate a given policy 1t

* Solution: iterative application of Bellman expectation backup
ViV, ... DV,

* Using synchronous backups,

e At each iteration k + 1

* For all states s € S Update v,,+(s) from v,(s’),
where s’ is a successor state of s

Policy Evaluation

Vn(S) = Lo TUalS) an(s,a)

Policy Evaluation

qn(S’a)= Ras Ty ZS’ES TaSs’Vk(S,)

Policy Evaluation

Vier(S) = 2geaT(als) (R +y 2o eg To%se VK(S))

VE11(8) ' s

Prediction Example

Al |B.
.
0| | B’
AKX

<

A

\/

>

Actions

3.3

8.8

4.4

5.3

1.5

1.5

3.0

2.3

1.9

0.5

0.1

0.7

0.7

0.4

-0.4

-1.0

-0.4

-0.4

-0.6

-1.2

-1.9

-1.3

-1.2

1.4

-2.0

(b)

Control Example

A

+5

22.0

24.4

22.0

19.4

17.5|

0

B!

19.8

22.0

19.8

17.8

16.0

17.8

19.8

17.8

16.0

14.4

.4

16.0

17.8

16.0

14.4

13.0

a) gridworld

14.4

16.0

14.4

13.0

11.7

D) V4

I

LILILIL
L

LILL

C) Tl

Bellman Optimality Equation

* Optimal state value: v*(s) = max v(s)
* Optimal action value: g*(s,a) = max ; q.(s,a)
* Optimal policy: t*(s) = argmax , q*(s,a)

Bellman Optimality Equation

v*(s)= max,gx*(s’,a’)

Bellman Optimality Equation

q*(s,a)= R% +y Yo g Toe VH(S')

g«(s,a) <+ s,a
r

U4 (8") < s

Bellman Optimality Equation
q*(s,a)= R% + Y Yo g T2 Max,q*(s’,a’)

g«(s,a) < s,a

Bellman Optimality Equation

* Optimal state value: v*(s) = max . V.(s)
* Optimal action value: g#*(s,a) = max . q.(s,a)
* Optimal policy: t*(s) = argmax , q*(s,a)

* *(s,a)= R% +Y g cg Te Max,qx(s’,a’)

* V*(S) = maX,cp q*(s, a)

Policy lteration

Given a policy 1t
* Evaluate the policy tv(s) = E[Ri1+ YRus + ...|S; = S]

* Improve the policy by acting greedily with respectto v
U = greedy(v,)

* Converting back and forth between prediction and control
e Start with random policy, eval it, improve value, improve policy

Value lteration

* Similar to Policy Iteration but start with random value function,
recursively improve it

* Exercise to figure out equations if you start with random value
Instead of policy

Put it together

1 2 3
4 |s |6 |7 r= -1
on all transitions
8 9 10 (11
actions
12 H3 |14

* Undiscounted episodic MDP (y=1)

* Nonterminal states 1, ..., 14

* One terminal state (shown twice as shaded squares)
* Actions leading out of the grid leave state unchanged
* Reward is =1 until the terminal state is reached

* Agent follows uniform random policy t(n|:) = t(e]|-) = t(s|-) = t(w|-)
=0.25

k

2

Uk for the

Random Policy

0.0

0.0

0.0

0.0

Greedy Policy

wrt Vg

0.0

0.0

0.0

0.0

+

+

0.0

0.0

0.0

0.0

A

& L
Y rd

v

&

&
Y

0.0

0.0

0.0

0.0

T

A

& 5
A 7
Y

N

1

+

TS

0.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-‘.T:‘
|}

N

-1.0

-1.0

-1.0

-1.0

N
A 4

:T=
)

N
4

-1.0

-1.0

-1.0

0.0

M
<
w

T
J

"N
Vv

LI

0.0

-1.7

-2.0

-2.0

-1.7

-2.0

-2.0

-2.0

N

-2.0

-2.0

-2.0

-1.7

-2.0

-20

-1.7

0.0

¥

LT

random
policy

k=3
k=10
k='00

0.0

-2.4

-2.9

-3.0

-2.4

-2.9

-3.0

-2.9

-2.9

-3.0

-2.9

24

f—

-3.0

-2.9

-2.4

0.0

—

l l_.T_.T

l“l"TT

0.0

-6.1

-8.4

9.0

-6.1

-1.7

8.4

8.4

8.4

8.4

-7.7

-6.1

f—

-9.0

-8.4

-6.1

0.0

—

ll_.T_.T

l'"l"TT

0.0

-14.

-20.

-22.

-14.

-18.

-20.

-20.

-20.

-20.

-18.

-14.

-22.

-20.

-14.

0.0

—

ll"T"T

L H]

optimal
policy

evaluation

Generalized Policy Iteration m

 Both are iterative versions of this JU V
n—>greedy(V)

Improvement
o
starting v *
V JU n* ¢
®

% —_—

S
. nte——V

DP Limitations

* DP uses full-width backups
* For each backup Every successor state and action is considered

* Using knowledge of the MDP transitions and reward function DP is
effective for medium-sized problems (millions of states)

* For large problems DP suffers Bellman’s curse of dimensionality

* Number of states n = |S| grows exponentially with number of state
variables Even one backup can be too expensive

Model Free RL via Sample Backups

* Model Free RL: optimize value of unknown MDP

* Using sample rewards and sample transitions <S, A, R’, S’>
Instead of reward function R and transition dynamics T

* Advantages: Model-free: no advance knowledge of MDP required
Breaks the curse of dimensionality through sampling

* Cost of backup is constant, independent of n = |S|

Experience Based Learning

* Many real world problems are better suited to being solved by RL
as opposed to DP based planning

* All the examples of agents we talked about first class
* Robots in your home
* Video games harder than tic tac toe
* Language

Monte Carlo Control

* Greedy policy improvement over V(s) requires model of MDP
TT'(S) = argmaX,eaR% + ¥ Lgeg T2 V'(8)

* Greedy policy improvement over Q(s, a) is model-free
TU(S) = argmax,,Q(s, a)

* Learn this Q by function approximation using the experiences
you’ve gathered by Monte Carlo sampling

Generalized Policy lteration
Monte Carlo Evaluation

JC

evaluation

m

n—>greedy(V)

Improvement

|4

Greedy Policy SKINNER BOX

Improvement
Limitations / \

SIGNAL LIGHTS //
O\ —

* Greedy doesn’t let you
always explore all the
actions you need

FOOD DISPENSER

TO SHOCK
GENERATOR

ELECTRIC GRID

Greedy Policy SKINNER BOX

Improvement
Limitations / \

SIGNAL LIGHTS //
O\ —

* Greedy doesn’t let you
always explore all the
actions you need

ELECTRIC GRID

Enlightenment

e-greedy exploration

* Simplest idea for ensuring continual exploration
* All m actions are tried with non-zero probability
* With probability 1 — choose the greedy action
* With probability choose an action at random

e/m+1—¢ if a* =argmax Q(s,a)
m(als) = acA
e/ m otherwise

Generalized Policy lteration
Monte Carlo Evaluation

JC

evaluation

m

n—>greedy(V)

Improvement

|4

Generalized Policy lteration
Monte Carlo Evaluation

You can’t fully evaluate the entire state space each time

JC

evaluation

m

n—>greedy(V)

Improvement

|4

Generalized Policy Iteration
with Fn Approximation
+ Monte Carlo Eval

Starting Q G T
ko Ik

You can’t fully evaluate the entire state space each time

JC

evaluation

m

n—>greedy(V)

Improvement

|4

	Slide 1: CSE 190 – Intro to Deep RL Classical Control, Pre-deep Learning
	Slide 2: Logistics
	Slide 3: Forward Search
	Slide 4: Backward Search
	Slide 5: Total Order and Partial Order Plans
	Slide 6: Monte Carlo Tree Search
	Slide 7: Improvements to MCTS Components
	Slide 8: Upper Confidence Trees (UCT)
	Slide 9: Upper Confidence Trees (UCT)
	Slide 10: Upper Confidence Trees (UCT)
	Slide 11: Why Reinforcement Learning?
	Slide 12: Origins of RL
	Slide 13: RL Agent Taxonomy
	Slide 14: Terminology
	Slide 15: More Terminology on Types of RL
	Slide 16: Markov Decision Process
	Slide 17: Formal MDP Definition
	Slide 18: Returns and Discounting
	Slide 19: Formal Definition of Policy
	Slide 20: Formal Definition of Value Function
	Slide 21: Dynamic Programming
	Slide 22: When to use DP
	Slide 23: Prediction vs Control
	Slide 24: Planning via DP
	Slide 25: Prediction Example
	Slide 26: Bellman Expectation
	Slide 27: Policy Evaluation
	Slide 28: Policy Evaluation
	Slide 29: Policy Evaluation
	Slide 30: Policy Evaluation
	Slide 31: Prediction Example
	Slide 32: Control Example
	Slide 33: Bellman Optimality Equation
	Slide 34: Bellman Optimality Equation
	Slide 35: Bellman Optimality Equation
	Slide 36: Bellman Optimality Equation
	Slide 37: Bellman Optimality Equation
	Slide 38: Policy Iteration
	Slide 39: Value Iteration
	Slide 40: Put it together
	Slide 41
	Slide 42
	Slide 43: Generalized Policy Iteration
	Slide 44: DP Limitations
	Slide 45: Model Free RL via Sample Backups
	Slide 46: Experience Based Learning
	Slide 47: Monte Carlo Control
	Slide 48: Generalized Policy Iteration with Monte Carlo Evaluation
	Slide 49: Greedy Policy Improvement Limitations
	Slide 50: Greedy Policy Improvement Limitations
	Slide 51: ε-greedy exploration
	Slide 52: Generalized Policy Iteration with Monte Carlo Evaluation
	Slide 53: Generalized Policy Iteration with Monte Carlo Evaluation
	Slide 54: Generalized Policy Iteration with Fn Approximation + Monte Carlo Eval

