CSE 190 – Intro to Deep RL Classical Control, Pre-deep Learning

Prithviraj Ammanabrolu

Logistics

For project proposals

- What task you're doing
- What env you intend to use? Are you making a sim yourself?
 - What are time estimates for how hard that would be
- Why is this interesting? If you make an agent in this env, who will care?
- Initial ideas on how to solve it (what will you do if X LLM doesn't work?)

Generally speaking the presentation will not be graded, but we will give feedback and expect a revised proposal slide deck to be submitted by the end of the week. That will be graded.

Forward Search

- Some deterministic implementations of forward search:
 - · breadth-first search
 - depth-first search
 - best-first search (e.g., A*)
 - greedy search
- Breadth-first and best-first search are sound and complete But they usually aren't practical, requiring too much memory
 - Memory requirement is exponential in the length of the solution
- In practice, more likely to use depth-first search or greedy search
 - Worst-case memory requirement is linear in the length of the solution
 - In general, sound but not complete
 - But classical planning has only finitely many states
 - Thus, can make depth-first search complete by doing loop-checking

Backward Search

- For forward search, we started at the initial state and computed state transitions
 - new state = T(s,a)
- For backward search, we start at the goal and compute inverse state transitions
 - new set of subgoals = T⁻¹(g,a)
- To define T⁻¹(g,a), must first define relevance: An action a is relevant for a goal g if
 - a makes at least one of g's literals true, g ∩ effects(a) ≠ Ø
 - a does not make any of g's literals false, g + n effects (a) = \emptyset and g n effects + (a) = \emptyset

Total Order and Partial Order Plans

Monte Carlo Tree Search

- 4 phases of building out and simulating paths along a search tree
- Various forms of this used in everything from Alpha Zero to modern LLM inference
- For arbitrary problem with start state s₀ and actions a_i
- All states have attributes:
 - Total simulation reward Q(s) and
 - Total no. of visits N(s)

Improvements to MCTS Components

- Improvements are possible for each of the parts I talked about
- Think about that it would take to improve selection / expansion phases

Upper Confidence Trees (UCT)

 A way of improving the selection phase by treating selection as a multi-arm bandit problem: which possible action to select that maximizes the possible payout (reward) in the future

$$ext{UCT}(v_i, v) = rac{Q(v_i)}{N(v_i)} + c\sqrt{rac{\ln N(v)}{N(v_i)}}$$

Upper Confidence Trees (UCT)

 A way of improving the selection phase by treating selection as a multi-arm bandit problem: which possible action to select that maximizes the possible payout (reward) in the future

$$ext{UCT}(v_i, v) = rac{Q(v_i)}{N(v_i)} + c\sqrt{rac{\ln N(v)}{N(v_i)}}$$

Exploit

Upper Confidence Trees (UCT)

 A way of improving the selection phase by treating selection as a multi-arm bandit problem: which possible action to select that maximizes the possible payout (reward) in the future

$$ext{UCT}(v_i,v) = rac{Q(v_i)}{N(v_i)} + c\sqrt{rac{\ln N(v)}{N(v_i)}}$$

Exploit

Explore

Why Reinforcement Learning?

- Reinforcement Learning:
 - The environment is initially unknown
 - The agent interacts with the environment
 - The agent improves its policy
- Planning:
 - A model of the environment is known
 - The agent performs computations with its model (without any external interaction)
 - The agent improves its policy a.k.a. deliberation, reasoning, introspection, pondering, thought, search

Origins of RL

RL Agent Taxonomy

Terminology

- Policy: agent's behavior function
 - Finding optimal policy known as the <u>control</u> problem
- Value function: how good is each state and/or action
 - Finding optimal value function is known as the <u>prediction</u> problem
- Model: agent's representation of the environment

More Terminology on Types of RL

- Model free ← will build up to today
- Model based

- On Policy ← will build up to today
 - · Learn directly from your experiences "on the job"
- Off policy
 - Learn from someone else's behavior

Markov Decision Process

Formal MDP Definition

A Markov Decision Process is a tuple <S, A,T, R, $\gamma>$

- S is a finite set of states
- A is a finite set of actions
- T is a state transition probability matrix, $T_{ss'}^a = P[S_{t+1} = s' | S_t = s, A_t = a]$
- R is a reward function, $R_s^a = E[R_{t+1} | S_t = s, A_t = a]$
- γ is a discount factor $\gamma \in [0, 1]$.

Returns and Discounting

• The return G_t is the total discounted reward from time-step t.

$$G_t = R_{t+1} + \gamma R_{t+2} + ... = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- The value of receiving reward R after k + 1 time-steps is $\gamma^k R$
- γ~=0 is "myopic", γ~=1 is "far-sighted"
- Why discount?
 - Mathematically convenient, avoids infinite returns
 - Animal/human/investment banker's behavior shows preference for immediate reward

Formal Definition of Policy

- Distribution of action over states: $\pi(a|s) = P[A_t = a | S_t = s]$
- Policy depends only on current state not history, this is the Markov property bit of MDP (how do people get around this for cases where history does matter)
- Theorem (abridged): There always exists an optimal policy for a given finite MDP. It follow the optimal value function.

Formal Definition of Value Function

 \bullet State value: expected return starting from state s, and then following policy π

•
$$V_{\pi}(s) = E_{\pi} [G_t | S_t = s]$$

- Action value: is the expected return starting from state s, taking action a, and then following policy $\boldsymbol{\pi}$
 - $q_{\pi}(s, a) = E_{\pi}[G_t | S_t = s, A_t = a]$

Dynamic Programming

- Building up to RL first requires understanding Dynamic Programming
- Dynamic sequential or temporal component to the problem Programming optimizing a "program", i.e. a policy
- A method for solving complex problems by breaking them down into subproblems
 - Solve the subproblems \rightarrow Combine solutions to subproblems

When to use DP

Dynamic Programming is a very general solution method for problems which have two properties:

- Optimal substructure:
 - Principle of optimality applies
 - Optimal solution can be decomposed into subproblems
- Overlapping subproblems:
 - Subproblems recur many times
 - Solutions can be cached and reused
- Markov decision processes satisfy both properties Bellman equation gives recursive decomposition Value function stores and reuses solutions

Prediction vs Control

Two problems in RL

- Prediction is the problem of evaluating how good any given state is for getting rewards given a policy
- Control is the problem of selecting actions that give you a policy that maximizes reward

Planning via DP

- Dynamic programming assumes full knowledge of the MDP
- It is used for planning in an MDP
- For prediction:
 - Input: MDP <S, A,T, R, γ > and policy π
 - Output: value function v_{π}
- For control:
 - Input: MDP <S, A,T, R, γ>
 - Output: optimal value function v* and: optimal policy $\pi*$

Prediction Example

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

(b)

Bellman Expectation

• The state-value function can again be decomposed into immediate reward plus discounted value of successor state, $v_{\pi}(s) = E_{\pi} [R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s]$

- The action-value function can similarly be decomposed, $q_{\pi}(s, a) = E_{\pi} [R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a]$
- No closed form solution (in general)

- Problem: evaluate a given policy π
- Solution: iterative application of Bellman expectation backup $v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_\pi$
- Using synchronous backups,
 - At each iteration k + 1
 - For all states $s \in S$ Update $v_{k+1}(s)$ from $v_k(s')$, where s' is a successor state of s

$$v_{\pi}(s) = \sum_{a \in A} \pi(a|s) q_{\pi}(s,a)$$

$$q_{\pi}(s,a) = R^a_s + \gamma \sum_{s' \in S} T^a_{ss'} vk(s')$$

$$v_{k+1}(s) = \sum_{a \in A} \pi(a|s) (R_s^a + \gamma \sum_{s' \in S} T_{ss'}^a vk(s'))$$

Prediction Example

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

(b)

Control Example

a) gridworld

22.0	24.4	22.0	19.4	17.5
19.8	22.0	19.8	17.8	16.0
17.8	19.8	17.8	16.0	14.4
16.0	17.8	16.0	14.4	13.0
14.4	16.0	14.4	13.0	11.7

b) v_*

c) π_*

- Optimal state value: $v^*(s) = \max_{\pi} v_{\pi}(s)$
- Optimal action value: $q^*(s,a) = \max_{\pi} q_{\pi}(s,a)$
- Optimal policy: $\pi^*(s) = \operatorname{argmax}_a q^*(s,a)$

$$v^*(s) = max_aq*(s',a')$$

$$q^*(s,a) = R^a_s + \gamma \sum_{s' \in S} T^a_{ss'} v^*(s')$$

$$q^*(s,a) = R^a_s + \gamma \sum_{s' \in S} T^a_{ss'} \max_a q^*(s',a')$$

Bellman Optimality Equation

- Optimal state value: $v*(s) = \max_{\pi} v_{\pi}(s)$
- Optimal action value: $q*(s,a) = \max_{\pi} q_{\pi}(s,a)$
- Optimal policy: $\pi^*(s) = \operatorname{argmax}_a q^*(s,a)$
- $q*(s,a) = R^a_s + \gamma \sum_{s' \in S} T^a_{ss'} \max_a q*(s',a')$
- $v^*(s) = \max_{a \in A} q^*(s, a)$

Policy Iteration

Given a policy π

- Evaluate the policy $\pi v_{\pi}(s) = E[R_{t+1} + \gamma R_{t+2} + ... | S_t = s]$
- Improve the policy by acting greedily with respect to v_{π} π' = greedy(v_{π})

- Converting back and forth between prediction and control
- Start with random policy, eval it, improve value, improve policy

Value Iteration

- Similar to Policy Iteration but start with random value function, recursively improve it
- Exercise to figure out equations if you start with random value instead of policy

Put it together

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

r = -1 on all transitions

- Undiscounted episodic MDP ($\gamma = 1$)
- Nonterminal states 1, ..., 14
- One terminal state (shown twice as shaded squares)
- Actions leading out of the grid leave state unchanged
- Reward is -1 until the terminal state is reached
- Agent follows uniform random policy π(n|·) = π(e|·) = π(s|·) = π(w|·)
 = 0.25

 $v_{m{k}}$ for the Random Policy

0.0 | 0.0 | 0.0 | 0.0

0.0 0.0 0.0

0.0

0.0

Greedy Policy w.r.t. v_k

0.0

random

policy

$$k = 1$$

$$\begin{vmatrix}
0.0 & -1.0 & -1.0 & -1.0 \\
-1.0 & -1.0 & -1.0 & -1.0 \\
-1.0 & -1.0 & -1.0 & -1.0 \\
-1.0 & -1.0 & -1.0 & 0.0
\end{vmatrix}$$

$$k = 2$$

$$\begin{vmatrix}
0.0 & -1.7 & -2.0 & -2.0 \\
-1.7 & -2.0 & -2.0 & -2.0 \\
-2.0 & -2.0 & -2.0 & -1.7 \\
-2.0 & -2.0 & -1.7 & 0.0
\end{vmatrix}$$

$$k = 3$$

$$\begin{vmatrix}
0.0 & -2.4 & -2.9 & -3.0 \\
-2.4 & -2.9 & -3.0 & -2.9 \\
-2.9 & -3.0 & -2.9 & -2.4 \\
-3.0 & -2.9 & -2.4 & 0.0
\end{vmatrix}$$

$$\begin{vmatrix}
0.0 & -6.1 & -8.4 & -9.0 \\
-6.1 & -7.7 & -8.4 & -8.4
\end{vmatrix}$$

$$k = \infty$$

$$0.0 | -14. | -20. | -22.$$

$$-14. | -18. | -20. | -20.$$

$$-20. | -20. | -18. | -14.$$

$$-22. | -20. | -14. | 0.0$$

-8.4|-8.4|-7.7|-6.1

-9.0 | -8.4 | -6.1 | 0.0

Generalized Policy Iteration

Both are iterative versions of this

DP Limitations

- DP uses full-width backups
- For each backup Every successor state and action is considered
- Using knowledge of the MDP transitions and reward function DP is effective for medium-sized problems (millions of states)
- For large problems DP suffers Bellman's curse of dimensionality
- Number of states n = |S| grows exponentially with number of state variables Even one backup can be too expensive

Model Free RL via Sample Backups

- Model Free RL: optimize value of unknown MDP
- Using sample rewards and sample transitions <S, A, R', S'>
 Instead of reward function R and transition dynamics T
- Advantages: Model-free: no advance knowledge of MDP required Breaks the curse of dimensionality through sampling
- Cost of backup is constant, independent of n = |S|

Experience Based Learning

- Many real world problems are better suited to being solved by RL as opposed to DP based planning
- All the examples of agents we talked about first class
 - Robots in your home
 - Video games harder than tic tac toe
 - Language

Monte Carlo Control

- Greedy policy improvement over V(s) requires model of MDP $\pi'(s) = \operatorname{argmax}_{a \in A} R^a_s + \gamma \sum_{s' \in S} T^a_{ss'} V'(s')$
- Greedy policy improvement over Q(s, a) is model-free π '(s) = argmax_{a \in A}Q(s, a)
- <u>Learn</u> this Q by function approximation using the experiences you've gathered by Monte Carlo sampling

Generalized Policy Iteration Monte Carlo Evaluation

Greedy Policy Improvement Limitations

 Greedy doesn't let you always explore all the actions you need

SKINNER BOX

Greedy Policy Improvement Limitations

 Greedy doesn't let you always explore all the actions you need

SKINNER BOX

ε-greedy exploration

- Simplest idea for ensuring continual exploration
- All m actions are tried with non-zero probability
- With probability 1 choose the greedy action
- With probability choose an action at random

$$\pi(a|s) = \left\{ egin{array}{ll} \epsilon/m + 1 - \epsilon & ext{if } a^* = rgmax \ a \in \mathcal{A} \ \epsilon/m & ext{otherwise} \end{array}
ight.$$

Generalized Policy Iteration Monte Carlo Evaluation

Generalized Policy Iteration Monte Carlo Evaluation

You can't fully evaluate the entire state space each time

Generalized Policy Iteration with Fn Approximation + Monte Carlo Eval

You can't fully evaluate the entire state space each time