CSE 190 - Intro to Deep RL
Classical Control,
Pre-deep Learning

Prithviraj Ammanabrolu

Thanks to David Silver’s DeepMind RL Course and Sheila Mclllraith’s
Planning Course at Uofl. Some slides were adapted form there.



Logistics

For project proposals
* What task you’re doing

* What env you intend to use? Are you making a sim yourself?
* What are time estimates for how hard that would be

* Why is this interesting? If you make an agent in this env, who will care?
* Initial ideas on how to solve it (what will you do if X LLM doesn’t work?)

Generally speaking the presentation will not be graded, but we will give
feedback and expect a revised proposal slide deck to be submitted by
the end of the week. That will be graded.



Forward Search

* Some deterministic implementations of forward search:
* breadth-first search
* depth-first search
* best-first search (e.g., A¥)
* dreedy search

* Breadth-first and best-first search are sound and complete But they
usually aren’t practical, requiring too much memory

* Memory requirementis exponential in the length of the solution

* In practice, more likely to use depth-first search or greedy search
* Worst-case memory requirement is linear in the length of the solution
* In general, sound but not complete
* But classical planning has only finitely many states
* Thus, can make depth-first search complete by doing loop-checking



Backward Search

* For forward search, we started at the initial state and computed
state transitions
* hew state =T(s,a)

* For backward search, we start at the goal and compute inverse
state transitions
* new set of subgoals =T'(g,a)

* To define T'(g,a), must first define relevance: An action a is
relevant for a goal g if
* a makes at least one of g’s literals true, g n effects(a) # @

* a does not make any of g’s literals false, g + n effects —(a) =@ and g- n
effects+(a)=0



Total Order and Partial Order Plans

Partial-Order Plan: Total-Order Plans:
Start Start Start Start Start Start Start
/ \ Right | [ Right Left Left Right Left
Sock Sock Sock Sock Sock Sock
Left Right
Sock Sock * ‘ * * * *
Left Left Right Right Right Left
Sock Sock Sock Sock Shoe Shoe
LeftSockOn RightSockOn + * * * * *
: Right Left Right Left Left Right
Left Right
Shoe SLgoe Sh+oe Sh:e Shfe Sh+oe So;:k So+ck
Left Right Left Right Left Right
Shoe Shoe Shoe Shoe Shoe Shoe
LeftShoeOn, RightShoeOn + * * + * *
Finish Finish Finish Finish Finish Finish Finish




Monte Carlo Tree Search

* 4 phases of building out and simulating paths along a search tree

* Various forms of this used in everything from Alpha Zero to
modern LLM inference

* For arbitrary problem with start state s;and actions a;

e All states have attributes: ()
* Total simulation reward Q(s) and /.\

* Total no. of visits N(s) ay
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Improvements to MCTS Components

* Improvements are possible for each of the parts | talked about

* Think about that it would take to improve selection / expansion
phases



Upper Confidence Trees (UCT)

* A way of improving the selection phase by treating selection as a
multi-arm bandit problem: which possible action to select that
maximizes the possible payout (reward) in the future

In N (v)
N(v;) N (v;)

UCT(’U,I;, ’U) —
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Upper Confidence Trees (UCT)

* A way of improving the selection phase by treating selection as a
multi-arm bandit problem: which possible action to select that
maximizes the possible payout (reward) in the future
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Why Reinforcement Learning?

* Reinforcement Learning:
* The environment is initially unknown
* The agent interacts with the environment
* The agentimproves its policy

* Planning:
* Amodel of the environmentis known

* The agent performs computations with its model (without any external
interaction)

* The agent improves its policy a.k.a. deliberation, reasoning, introspection,
pondering, thought, search



Origins of RL
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Terminology

* Policy: agent’s behavior function
* Finding optimal policy known as the control problem

* Value function: how good is each state and/or action
* Finding optimal value function is known as the prediction problem

* Model: agent’s representation of the environment



More Terminology on Types of RL

* Model free < will build up to today
* Model based

* On Policy €< will build up to today

* Learn directly from your experiences “on the job”

* Off policy

e Learn from someone else’s behavior



Markov Decision Process
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Formal MDP Definition

A Markov Decision Process is a tuple <S, AT, R, y>
e Sis afinite set of states
e Ais a finite set of actions

* T is a state transition probability matrix,
TP =P[Si1=5"|S;=s, A =48]

* Ris areward function, R8, =E[R,| S;=s, A, = a]
* vis adiscount factory € [0, 1].



Returns and Discounting

* The return G; is the total discounted reward from time-step t.
Gy = Req * YRz * oo = o YR Lk

* The value of receiving reward R after k + 1 time-steps is YR

* y~=0 is “myopic”, y~=1 is “far-sighted”

* Why discount?
* Mathematically convenient, avoids infinite returns

* Animal/human/investment banker’s behavior shows preference for
immediate reward



Formal Definition of Policy

* Distribution of action over states: mt(a|s) =P [A,=a | S; = S]

* Policy depends only on current state not history, this is the Markov
oroperty bit of MDP (how do people get around this for cases
where history does matter)

* Theorem (abridged): There always exists an optimal policy for a
given finite MDP. It follow the optimal value function.




Formal Definition of Value Function

* State value: expected return starting from state s, and then
following policy 1t
* Vr(S) = Er [Gi | S = s]

* Action value: is the expected return starting from state s, taking
action a, and then following policy Tt
* g.(s,a)=E [G;]|S;=s, A =a]



Dynamic Programming

* Building up to RL first requires understanding Dynamic
Programming

* Dynamic sequential or temporal component to the problem
Programming optimizing a “program?”, i.e. a policy

* A method for solving complex problems by breaking them down

Into subproblems
* Solve the subproblems - Combine solutions to subproblems




When to use DP

Dynamic Programming is a very general solution method for problems
which have two properties:

* Optimal substructure:

* Principle of optimality applies

* Optimal solution can be decomposed into subproblems
* Overlapping subproblems:

* Subproblems recur many times
e Solutions can be cached and reused

* Markov decision processes satisfy both properties Bellman equation
gives recursive decomposition Value function stores and reuses
solutions



Prediction vs Control

Two problems in RL

* Prediction is the problem of evaluating how good any given state is
for getting rewards given a policy

* Controlis the problem of selecting actions that give you a policy
that maximizes reward



Planning via DP

* Dynamic programming assumes full knowledge of the MDP
* |tis used for planning in an MDP

* For prediction:
* Input: MDP <§, A,T, R, y> and policy 1t
* Output: value function v,

* For control:
* Input: MDP <S§, A,T, R, y>
* Output: optimalvalue function v+ and: optimal policy Tt



Prediction Example
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Bellman Expectation

* The state-value function can again be decomposed into
Immediate reward plus discounted value of successor state,
Vr(S) = B [Resq + YWi(Spiq) | Sy = 8]

* The action-value function can similarly be decomposed,
dn(S, @) = B [Req + YA(Sii1, Apg) [ S =8, A = a]

* No closed form solution (in general)



Policy Evaluation

* Problem: evaluate a given policy 1t

* Solution: iterative application of Bellman expectation backup
ViV, ... DV,

* Using synchronous backups,

e At each iteration k + 1

* For all states s € S Update v,,+(s) from v,(s’),
where s’ is a successor state of s



Policy Evaluation

Vn(S) = Lo TUalS) an(s,a)



Policy Evaluation

qn(S’a)= Ras Ty ZS’ES TaSs’Vk(S,)



Policy Evaluation

Vier(S) = 2geaT(als) (R +y 2o eg To%se VK(S))

VE11(8) ' s



Prediction Example
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Control Example
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Bellman Optimality Equation

* Optimal state value: v*(s) = max  v(s)
* Optimal action value: g*(s,a) = max ; q.(s,a)
* Optimal policy: t*(s) = argmax , q*(s,a)



Bellman Optimality Equation

v*(s)= max,gx*(s’,a’)



Bellman Optimality Equation

q*(s,a)= R% +y Yo g Toe VH(S')

g«(s,a) <+ s,a
r

U4 (8") < s



Bellman Optimality Equation
q*(s,a)= R% + Y Yo g T2 Max,q*(s’,a’)

g«(s,a) < s,a




Bellman Optimality Equation

* Optimal state value: v*(s) = max . V.(s)
* Optimal action value: g#*(s,a) = max . q.(s,a)
* Optimal policy: t*(s) = argmax , q*(s,a)

* *(s,a)= R% +Y g cg Te Max,qx(s’,a’)

* V*(S) = maX,cp q*(s, a)



Policy lteration

Given a policy 1t
* Evaluate the policy tv(s) = E[Ri1+ YRus + ...|S; = S]

* Improve the policy by acting greedily with respectto v
U = greedy(v,)

* Converting back and forth between prediction and control
e Start with random policy, eval it, improve value, improve policy



Value lteration

* Similar to Policy Iteration but start with random value function,
recursively improve it

* Exercise to figure out equations if you start with random value
Instead of policy



Put it together

1 2 3
4 |s |6 |7 r= -1
on all transitions
8 9 10 (11
actions
12 H3 |14

* Undiscounted episodic MDP (y=1)

* Nonterminal states 1, ..., 14

* One terminal state (shown twice as shaded squares)
* Actions leading out of the grid leave state unchanged
* Reward is =1 until the terminal state is reached

* Agent follows uniform random policy t(n|:) = t(e]|-) = t(s|-) = t(w|-)
=0.25
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evaluation

Generalized Policy Iteration m

 Both are iterative versions of this JU V
n—>greedy(V)
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DP Limitations

* DP uses full-width backups
* For each backup Every successor state and action is considered

* Using knowledge of the MDP transitions and reward function DP is
effective for medium-sized problems (millions of states)

* For large problems DP suffers Bellman’s curse of dimensionality

* Number of states n = |S| grows exponentially with number of state
variables Even one backup can be too expensive



Model Free RL via Sample Backups

* Model Free RL: optimize value of unknown MDP

* Using sample rewards and sample transitions <S, A, R’, S’>
Instead of reward function R and transition dynamics T

* Advantages: Model-free: no advance knowledge of MDP required
Breaks the curse of dimensionality through sampling

* Cost of backup is constant, independent of n = |S|



Experience Based Learning

* Many real world problems are better suited to being solved by RL
as opposed to DP based planning

* All the examples of agents we talked about first class
* Robots in your home
* Video games harder than tic tac toe
* Language



Monte Carlo Control

* Greedy policy improvement over V(s) requires model of MDP
TT'(S) = argmaX,eaR% + ¥ Lgeg T2 V'(8)

* Greedy policy improvement over Q(s, a) is model-free
TU(S) = argmax,,Q(s, a)

* Learn this Q by function approximation using the experiences
you’ve gathered by Monte Carlo sampling



Generalized Policy lteration
Monte Carlo Evaluation
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Greedy Policy SKINNER BOX

Improvement
Limitations / \
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* Greedy doesn’t let you
always explore all the
actions you need
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Greedy Policy SKINNER BOX

Improvement
Limitations / \
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* Greedy doesn’t let you
always explore all the
actions you need
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e-greedy exploration

* Simplest idea for ensuring continual exploration
* All m actions are tried with non-zero probability
* With probability 1 — choose the greedy action
* With probability choose an action at random

e/m+1—¢ if a* =argmax Q(s,a)
m(als) = acA
e/ m otherwise



Generalized Policy lteration
Monte Carlo Evaluation
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Generalized Policy lteration
Monte Carlo Evaluation

You can’t fully evaluate the entire state space each time
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Generalized Policy Iteration
with Fn Approximation
+ Monte Carlo Eval

Starting Q G T
ko Ik

You can’t fully evaluate the entire state space each time
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