
CSE 190 – Intro to Deep RL
Classical Control,
Pre-deep Learning

Prithviraj Ammanabrolu

Thanks to David Silver’s DeepMind RL Course and Sheila McIllraith’s
Planning Course at UofT. Some slides were adapted form there.

Logistics

For project proposals
• What task you’re doing
• What env you intend to use? Are you making a sim yourself?

• What are time estimates for how hard that would be

• Why is this interesting? If you make an agent in this env, who will care?
• Initial ideas on how to solve it (what will you do if X LLM doesn’t work?)
Generally speaking the presentation will not be graded, but we will give
feedback and expect a revised proposal slide deck to be submitted by
the end of the week. That will be graded.

Forward Search

• Some deterministic implementations of forward search:
• breadth-first search
• depth-first search
• best-first search (e.g., A*)
• greedy search

• Breadth-first and best-first search are sound and complete But they
usually aren’t practical, requiring too much memory
• Memory requirement is exponential in the length of the solution

• In practice, more likely to use depth-first search or greedy search
• Worst-case memory requirement is linear in the length of the solution
• In general, sound but not complete
• But classical planning has only finitely many states
• Thus, can make depth-first search complete by doing loop-checking

Backward Search

• For forward search, we started at the initial state and computed
state transitions
• new state = T(s,a)

• For backward search, we start at the goal and compute inverse
state transitions
• new set of subgoals = T-1(g,a)

• To define T-1(g,a), must first define relevance: An action a is
relevant for a goal g if
• a makes at least one of g’s literals true, g ∩ effects(a) ≠ ∅
• a does not make any of g’s literals false, g + ∩ effects – (a) = ∅ and g– ∩

effects + (a) = ∅

Total Order and Partial Order Plans

Monte Carlo Tree Search

• 4 phases of building out and simulating paths along a search tree
• Various forms of this used in everything from Alpha Zero to

modern LLM inference
• For arbitrary problem with start state s0 and actions ai

• All states have attributes:
• Total simulation reward Q(s) and
• Total no. of visits N(s)

Improvements to MCTS Components

• Improvements are possible for each of the parts I talked about
• Think about that it would take to improve selection / expansion

phases

Upper Confidence Trees (UCT)

• A way of improving the selection phase by treating selection as a
multi-arm bandit problem: which possible action to select that
maximizes the possible payout (reward) in the future

Upper Confidence Trees (UCT)

• A way of improving the selection phase by treating selection as a
multi-arm bandit problem: which possible action to select that
maximizes the possible payout (reward) in the future

Exploit

Upper Confidence Trees (UCT)

• A way of improving the selection phase by treating selection as a
multi-arm bandit problem: which possible action to select that
maximizes the possible payout (reward) in the future

Exploit Explore

Why Reinforcement Learning?

• Reinforcement Learning:
• The environment is initially unknown
• The agent interacts with the environment
• The agent improves its policy

• Planning:
• A model of the environment is known
• The agent performs computations with its model (without any external

interaction)
• The agent improves its policy a.k.a. deliberation, reasoning, introspection,

pondering, thought, search

Origins of RL

RL Agent
Taxonomy

Terminology

• Policy: agent’s behavior function
• Finding optimal policy known as the control problem

• Value function: how good is each state and/or action
• Finding optimal value function is known as the prediction problem

• Model: agent’s representation of the environment

More Terminology on Types of RL

• Model free  will build up to today
• Model based

• On Policy  will build up to today
• Learn directly from your experiences “on the job”

• Off policy
• Learn from someone else’s behavior

Markov Decision Process

Formal MDP Definition

A Markov Decision Process is a tuple <S, A,T, R, γ>
• S is a finite set of states
• A is a finite set of actions
• T is a state transition probability matrix,

Ta
ss’ = P [St+1 = s’ | St = s, At = a]

• R is a reward function, Ra
s = E [Rt+1 | St = s, At = a]

• γ is a discount factor γ ∈ [0, 1].

Returns and Discounting

• The return Gt is the total discounted reward from time-step t.
Gt = Rt+1 + γRt+2 + ... = σ𝑘=0

∞ γ𝑘𝑅 𝑡 + 𝑘 + 1

• The value of receiving reward R after k + 1 time-steps is γkR
• γ~=0 is “myopic”, γ~=1 is “far-sighted”
• Why discount?

• Mathematically convenient, avoids infinite returns
• Animal/human/investment banker’s behavior shows preference for

immediate reward

Formal Definition of Policy

• Distribution of action over states: π(a|s) = P [At = a | St = s]
• Policy depends only on current state not history, this is the Markov

property bit of MDP (how do people get around this for cases
where history does matter)

• Theorem (abridged): There always exists an optimal policy for a
given finite MDP. It follow the optimal value function.

Formal Definition of Value Function

• State value: expected return starting from state s, and then
following policy π
• vπ(s) = Eπ [Gt | St = s]

• Action value: is the expected return starting from state s, taking
action a, and then following policy π
• qπ(s, a) = Eπ [Gt | St = s, At = a]

Dynamic Programming

• Building up to RL first requires understanding Dynamic
Programming

• Dynamic sequential or temporal component to the problem
Programming optimizing a “program”, i.e. a policy

• A method for solving complex problems by breaking them down
into subproblems
• Solve the subproblems → Combine solutions to subproblems

When to use DP

Dynamic Programming is a very general solution method for problems
which have two properties:
• Optimal substructure:

• Principle of optimality applies
• Optimal solution can be decomposed into subproblems

• Overlapping subproblems:
• Subproblems recur many times
• Solutions can be cached and reused

• Markov decision processes satisfy both properties Bellman equation
gives recursive decomposition Value function stores and reuses
solutions

Prediction vs Control

Two problems in RL
• Prediction is the problem of evaluating how good any given state is

for getting rewards given a policy
• Control is the problem of selecting actions that give you a policy

that maximizes reward

Planning via DP

• Dynamic programming assumes full knowledge of the MDP
• It is used for planning in an MDP
• For prediction:

• Input: MDP <S, A,T, R, γ> and policy π
• Output: value function vπ

• For control:
• Input: MDP <S, A,T, R, γ>
• Output: optimal value function v∗ and: optimal policy π∗

Prediction Example

Bellman Expectation

• The state-value function can again be decomposed into
immediate reward plus discounted value of successor state,

vπ(s) = Eπ [Rt+1 + γvπ(St+1) | St = s]
• The action-value function can similarly be decomposed,

 qπ(s, a) = Eπ [Rt+1 + γqπ(St+1, At+1) | St = s, At = a]
• No closed form solution (in general)

Policy Evaluation

• Problem: evaluate a given policy π
• Solution: iterative application of Bellman expectation backup

v1 → v2 → ... → vπ

• Using synchronous backups,
• At each iteration k + 1
• For all states s ∈ S Update vk+1(s) from vk(s’),

where s’ is a successor state of s

Policy Evaluation

vπ(s) = σa∈A π(a|s) qπ(s,a)

Policy Evaluation

qπ(s,a)= Ra
s + γ σs’∈S Ta

ss’
vk(s’)

Policy Evaluation

vk+1(s) = σa∈A π(a|s) (Ra
s + γ σs’∈S Ta

ss’
vk(s’))

Prediction Example

Control Example

Bellman Optimality Equation

• Optimal state value: v*(s) = max π vπ(s)
• Optimal action value: q*(s,a) = max π qπ(s,a)
• Optimal policy: π*(s) = argmax a q*(s,a)

Bellman Optimality Equation

v*(s)= maxaq∗(s’,a’)

Bellman Optimality Equation

q*(s,a)= Ra
s + γ σs’∈S Ta

ss’
v∗(s’)

Bellman Optimality Equation

q*(s,a)= Ra
s + γ σs’∈S Ta

ss’
maxaq∗(s’,a’)

Bellman Optimality Equation

• Optimal state value: v∗(s) = max π vπ(s)
• Optimal action value: q∗(s,a) = max π qπ(s,a)
• Optimal policy: π*(s) = argmax a q*(s,a)

• q*(s,a)= Ra
s + γ σs’∈S Ta

ss’
maxaq∗(s’,a’)

• v*(s) = maxa∈A q*(s, a)

Policy Iteration

Given a policy π
• Evaluate the policy π vπ(s) = E [Rt+1 + γRt+2 + ...|St = s]
• Improve the policy by acting greedily with respect to vπ

 π’ = greedy(vπ)

• Converting back and forth between prediction and control
• Start with random policy, eval it, improve value, improve policy

Value Iteration

• Similar to Policy Iteration but start with random value function,
recursively improve it

• Exercise to figure out equations if you start with random value
instead of policy

Put it together

• Undiscounted episodic MDP (γ = 1)
• Nonterminal states 1, ..., 14
• One terminal state (shown twice as shaded squares)
• Actions leading out of the grid leave state unchanged
• Reward is −1 until the terminal state is reached
• Agent follows uniform random policy π(n|·) = π(e|·) = π(s|·) = π(w|·)

= 0.25

Generalized Policy Iteration

• Both are iterative versions of this

DP Limitations

• DP uses full-width backups
• For each backup Every successor state and action is considered
• Using knowledge of the MDP transitions and reward function DP is

effective for medium-sized problems (millions of states)
• For large problems DP suffers Bellman’s curse of dimensionality
• Number of states n = |S| grows exponentially with number of state

variables Even one backup can be too expensive

Model Free RL via Sample Backups

• Model Free RL: optimize value of unknown MDP
• Using sample rewards and sample transitions <S, A, R’, S’>

Instead of reward function R and transition dynamics T
• Advantages: Model-free: no advance knowledge of MDP required

Breaks the curse of dimensionality through sampling
• Cost of backup is constant, independent of n = |S|

Experience Based Learning

• Many real world problems are better suited to being solved by RL
as opposed to DP based planning

• All the examples of agents we talked about first class
• Robots in your home
• Video games harder than tic tac toe
• Language

Monte Carlo Control

• Greedy policy improvement over V(s) requires model of MDP
π'(s) = argmaxa∈ARa

s + γ σs’∈S Ta
ss’

V’(s’)

• Greedy policy improvement over Q(s, a) is model-free
 π’(s) = argmaxa∈AQ(s, a)

• Learn this Q by function approximation using the experiences
you’ve gathered by Monte Carlo sampling

Generalized Policy Iteration with
Monte Carlo Evaluation

Greedy Policy
Improvement
Limitations

• Greedy doesn’t let you
always explore all the
actions you need

Greedy Policy
Improvement
Limitations

• Greedy doesn’t let you
always explore all the
actions you need

Enlightenment

ε-greedy exploration

• Simplest idea for ensuring continual exploration
• All m actions are tried with non-zero probability
• With probability 1 − choose the greedy action
• With probability choose an action at random

Generalized Policy Iteration with
Monte Carlo Evaluation

Generalized Policy Iteration with
Monte Carlo Evaluation

You can’t fully evaluate the entire state space each time

Generalized Policy Iteration
with Fn Approximation
+ Monte Carlo Eval

You can’t fully evaluate the entire state space each time

	Slide 1: CSE 190 – Intro to Deep RL Classical Control, Pre-deep Learning
	Slide 2: Logistics
	Slide 3: Forward Search
	Slide 4: Backward Search
	Slide 5: Total Order and Partial Order Plans
	Slide 6: Monte Carlo Tree Search
	Slide 7: Improvements to MCTS Components
	Slide 8: Upper Confidence Trees (UCT)
	Slide 9: Upper Confidence Trees (UCT)
	Slide 10: Upper Confidence Trees (UCT)
	Slide 11: Why Reinforcement Learning?
	Slide 12: Origins of RL
	Slide 13: RL Agent Taxonomy
	Slide 14: Terminology
	Slide 15: More Terminology on Types of RL
	Slide 16: Markov Decision Process
	Slide 17: Formal MDP Definition
	Slide 18: Returns and Discounting
	Slide 19: Formal Definition of Policy
	Slide 20: Formal Definition of Value Function
	Slide 21: Dynamic Programming
	Slide 22: When to use DP
	Slide 23: Prediction vs Control
	Slide 24: Planning via DP
	Slide 25: Prediction Example
	Slide 26: Bellman Expectation
	Slide 27: Policy Evaluation
	Slide 28: Policy Evaluation
	Slide 29: Policy Evaluation
	Slide 30: Policy Evaluation
	Slide 31: Prediction Example
	Slide 32: Control Example
	Slide 33: Bellman Optimality Equation
	Slide 34: Bellman Optimality Equation
	Slide 35: Bellman Optimality Equation
	Slide 36: Bellman Optimality Equation
	Slide 37: Bellman Optimality Equation
	Slide 38: Policy Iteration
	Slide 39: Value Iteration
	Slide 40: Put it together
	Slide 41
	Slide 42
	Slide 43: Generalized Policy Iteration
	Slide 44: DP Limitations
	Slide 45: Model Free RL via Sample Backups
	Slide 46: Experience Based Learning
	Slide 47: Monte Carlo Control
	Slide 48: Generalized Policy Iteration with Monte Carlo Evaluation
	Slide 49: Greedy Policy Improvement Limitations
	Slide 50: Greedy Policy Improvement Limitations
	Slide 51: ε-greedy exploration
	Slide 52: Generalized Policy Iteration with Monte Carlo Evaluation
	Slide 53: Generalized Policy Iteration with Monte Carlo Evaluation
	Slide 54: Generalized Policy Iteration with Fn Approximation + Monte Carlo Eval

