CSE 190 - Intro to Deep RL
4/22 — Deep RL, pre-LLMs

Prithviraj Ammanabrolu

Thanks to David Silver’s DeepMind RL Course and Rich Sutton’s RL
Book. Some slides were adapted form there.



Monte Carlo Tree Search

* 4 phases of building out and simulating paths along a search tree

* Various forms of this used in everything from Alpha Zero to
modern LLM inference

* For arbitrary problem with start state s;and actions a;

e All states have attributes: ()
* Total simulation reward Q(s) and /.\

* Total no. of visits N(s) ay
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Why Reinforcement Learning?

* Reinforcement Learning:
* The environment is initially unknown
* The agent interacts with the environment
* The agentimproves its policy

* Planning:
* Amodel of the environmentis known

* The agent performs computations with its model (without any external
interaction)

* The agent improves its policy a.k.a. deliberation, reasoning, introspection,
pondering, thought, search



When to use DP

Dynamic Programming is a very general solution method for problems
which have two properties:

* Optimal substructure:

* Principle of optimality applies

* Optimal solution can be decomposed into subproblems
* Overlapping subproblems:

* Subproblems recur many times
e Solutions can be cached and reused

* Markov decision processes satisfy both properties Bellman equation
gives recursive decomposition Value function stores and reuses
solutions
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Generalized Policy Iteration
with Fn Approximation
+ Monte Carlo Eval
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Issues with Monte Carlo estimates

* Need returns for whole trajectory

* The larger the state space is and the longer the horizon, the harder
it is to get good estimates

* High variance, very dependent on “getting lucky” and seeing high
return trajectories



How to fix? Temporal Difference

» With Monte Carlo, we update the value function from a complete
episode, and so we use the actual accurate discounted return of
this episode.

Monte Carlo: V(St) < V(St) —+ O:[Gt — V(St)]

* With TD Learning, we update the value function from a step, and we
replace G,, which we don’t know, with an estimated return called
the TD target - a bootstrapping method similar to DP

TD Learning: V(St) <— V(St) -+ (l’[Rt-l—l =+ '}’V(St+1) — V(St)]



TD(0) = TD(o°)

V(St) < V(S:) + a|Rip1 + 4V (St41) — V(S
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TD Advantages

* Temporal-difference (TD) learning has several advantages over
Monte-Carlo (MC)
* Lower variance
* Online
* Incomplete sequences

* Naturalidea: use TD instead of MC in our control loop Apply TD to
Q(S, A) Use e-greedy policy improvement Update every time-step



TD Disadvantages

* Bootstrapping means you are chasing a moving target, stability of
training very dependent on initialization



How to fix state space is very large

1. Learn from prior experiences

2. Function approximation



On Policy TD Learning - SARSA

* On Policy = learning the policy you are evaluating

* Will not cover SARSA as it is not really used anymore but will cover
On Policy later on



Off-policy Learning

* Evaluate target policy 1t(als) to compute v(s) or g.(s, a)

* While following behavior policy u(als)

{81, A1, R2, coey ST}N l.J

Why is this important?

_earn from observing humans or other agents
Re-use experience generated from old policies my, T, ..., T,
_earn about optimal policy while following exploratory policy

_earn about multiple policies while following one policy



Q-Learning

* We now consider off-policy learning of action-values Q(s, a)
* Next action is chosen using behavior policy A1 ~ H(-|Sy)
* But we consider alternative successor action A’ ~ 1t(-|S)

* And update Q(S;, A,) towards value of alternative action from
policy you’re actually evaluating

Q(St ’ At) < Q(St ’ At) +a Rt+1 + YQ(SH’I: A’) - Q(St ’ At)



Q-Learning

* We now allow both behavior and target policies to improve
* The target policy tis greedy w.r.t. Q(s, a)
* TU(St4q) = argmax, Q(S;,q, a’)
* The behavior policy p is e.g. -greedy w.r.t. Q(s, a)
* The Q-learning target then simplifies:
Ris1+YQ(Swq, AQ)
=Rir1 + YQ(S4q, argmax, Q(Sy.q, @’))
=Riv1 + MaXxXy, YQ(Siq, @)



Q-Learning

* Q(S,A) € Q(S,A) +a(R+ymax,Q(S), a’) - Q(S, A)

* Q-learning control converges to the optimal action-value function,
Q(s, a) 2> gx(s, a)




Q-Learning Full Algorithm

Initialize Q(s,a),Vs € §,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) « Q(S,A) + oz[R + vy max, Q(S’,a) — Q(S, A)]
S+ 5

until S is terminal




Kinda Large Scale RL

* Reinforcement learning can be used to solve large problems, e.g.
» Backgammon: 10%° states
 Computer Go: 10770 states
* Helicopter: continuous state space

* How can we scale up the model-free methods for prediction and
control from the last two lectures?



Value Function Approximation

* So far we have represented value function by a lookup table
* Every state s has an entry V(s)

* Or every state-action pair s, a has an entry Q(s, a)
* Problem with large MDPs:

* There are too many states and/or actions to store in memory
* |tis too slow to learn the value of each state individually

* Solution for large MDPs:
* Estimate value function with function approximation
V(s, W) 2 vy (s) or (s, a, W) = dq(s, a)
* Generalize from seen states to unseen states
* Update parameter w using MC or TD learning



Types of Value Function Approximators




Action-value Function Approximation

* Approximate the action-value function
a(S, A, w) = qr(S, A)

* Minimize mean-squared error between approximate action-value
fn §(S, A, w) and true action-value fn g, (S, A)

J(w) = Er [(a(S, A) - (S, A, w))?]
* Use stochastic gradient descent to find a local minimum
-1/2V,J(w) = (9,(S, A) - §(S, A, w))V,, (S, A, w)
Aw = a(qn(S, A) - (S, A, w))V,, §(S, A, w)



Deep Neural Nets as function approx.

* Need a Neural Net that is actually able to effectively encode
observations and actions

* For the original Atari, this was CNNs
* These days, itis transformers

* Note that you generally need hundreds of k to millions of steps for
most environments. The bigger your policy the slower this is



Deep Q Network - DQN

* You actually know all the pieces now
* You put Q-learning together with the function approximation



General loop

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity [V
Initialize actlon-value function Q with random weights

for episode = 1, M do
Initialise sequence s; = {1} and preprocessed sequenced ¢; = ¢p(s1)
fort=1,T do
With probability e select a random action a;
otherwise select a; = max, Q*(¢(sz), a;0)
Execute action a; in emulator and observe reward r; and image ;1
Set 5441 = S¢, a¢, T¢41 and preprocess ¢y1 = G(S¢41)
Store transition (¢¢, a;, ¢, ¢r+1) in D
Sample random minibatch of transitions (¢;, a;, 7, @;4+1) from D

Soty. — | Ti for terminal ¢ 1
Y = r; +ymax, Q(Pj41,a’;6) for non-terminal ¢ ;¢

Perform a gradient descent step on (y; — Q(¢;, a;;0))” according to equation 3
end for
end for
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Where are we now?

* GPU go brrrr as solution to large state space RL
* Algorithms still not particularly efficient
* No guarantees on anything
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