CSE 190 - Intro to Deep RL
4/22 — Deep RL, pre-LLMs

Prithviraj Ammanabrolu

Thanks to David Silver’s DeepMind RL Course and Rich Sutton’s RL
Book. Some slides were adapted form there.

Monte Carlo Tree Search

* 4 phases of building out and simulating paths along a search tree

* Various forms of this used in everything from Alpha Zero to
modern LLM inference

* For arbitrary problem with start state s;and actions a;

e All states have attributes: ()
* Total simulation reward Q(s) and /.\

* Total no. of visits N(s) ay

, VAR
(—4\/ ,/'—"\: >’_‘\
_/ U

Why Reinforcement Learning?

* Reinforcement Learning:
* The environment is initially unknown
* The agent interacts with the environment
* The agentimproves its policy

* Planning:
* Amodel of the environmentis known

* The agent performs computations with its model (without any external
interaction)

* The agent improves its policy a.k.a. deliberation, reasoning, introspection,
pondering, thought, search

When to use DP

Dynamic Programming is a very general solution method for problems
which have two properties:

* Optimal substructure:

* Principle of optimality applies

* Optimal solution can be decomposed into subproblems
* Overlapping subproblems:

* Subproblems recur many times
e Solutions can be cached and reused

* Markov decision processes satisfy both properties Bellman equation
gives recursive decomposition Value function stores and reuses
solutions

evaluation

Generalized Policy Iteration m

 Both are iterative versions of this JU V
n—>greedy(V)

Improvement
o
starting v *
V JU n* ¢
®

% —_—

S
. nte——V

Generalized Policy Iteration
with Fn Approximation
+ Monte Carlo Eval

Starting Q G T
ko Ik

You can’t fully evaluate the entire state space each time

JC

evaluation

m

n—>greedy(V)

Improvement

|4

Issues with Monte Carlo estimates

* Need returns for whole trajectory

* The larger the state space is and the longer the horizon, the harder
it is to get good estimates

* High variance, very dependent on “getting lucky” and seeing high
return trajectories

How to fix? Temporal Difference

» With Monte Carlo, we update the value function from a complete
episode, and so we use the actual accurate discounted return of
this episode.

Monte Carlo: V(St) < V(St) —+ O:[Gt — V(St)]

* With TD Learning, we update the value function from a step, and we
replace G,, which we don’t know, with an estimated return called
the TD target - a bootstrapping method similar to DP

TD Learning: V(St) <— V(St) -+ (l’[Rt-l—l =+ '}’V(St+1) — V(St)]

TD(0) = TD(o°)

V(St) < V(S:) + a|Rip1 + 4V (St41) — V(S

80

T

mm O—o—O—o—O—e—O—e ---
7]

P S

8

a)
W O—e—0O—e—0O—e .- —0

@]
T
g O—e—0O—e—0O—e—0

o
§ O—e—O—e—O

TD(0)

TD Advantages

* Temporal-difference (TD) learning has several advantages over
Monte-Carlo (MC)
* Lower variance
* Online
* Incomplete sequences

* Naturalidea: use TD instead of MC in our control loop Apply TD to
Q(S, A) Use e-greedy policy improvement Update every time-step

TD Disadvantages

* Bootstrapping means you are chasing a moving target, stability of
training very dependent on initialization

How to fix state space is very large

1. Learn from prior experiences

2. Function approximation

On Policy TD Learning - SARSA

* On Policy = learning the policy you are evaluating

* Will not cover SARSA as it is not really used anymore but will cover
On Policy later on

Off-policy Learning

* Evaluate target policy 1t(als) to compute v(s) or g.(s, a)

* While following behavior policy u(als)

{81, A1, R2, coey ST}N l.J

Why is this important?

_earn from observing humans or other agents
Re-use experience generated from old policies my, T, ..., T,
_earn about optimal policy while following exploratory policy

_earn about multiple policies while following one policy

Q-Learning

* We now consider off-policy learning of action-values Q(s, a)
* Next action is chosen using behavior policy A1 ~ H(-|Sy)
* But we consider alternative successor action A’ ~ 1t(-|S)

* And update Q(S;, A,) towards value of alternative action from
policy you’re actually evaluating

Q(St ’ At) < Q(St ’ At) +a Rt+1 + YQ(SH’I: A’) - Q(St ’ At)

Q-Learning

* We now allow both behavior and target policies to improve
* The target policy tis greedy w.r.t. Q(s, a)
* TU(St4q) = argmax, Q(S;,q, a’)
* The behavior policy p is e.g. -greedy w.r.t. Q(s, a)
* The Q-learning target then simplifies:
Ris1+YQ(Swq, AQ)
=Rir1 + YQ(S4q, argmax, Q(Sy.q, @’))
=Riv1 + MaXxXy, YQ(Siq, @)

Q-Learning

* Q(S,A) € Q(S,A) +a(R+ymax,Q(S), a’) - Q(S, A)

* Q-learning control converges to the optimal action-value function,
Q(s, a) 2> gx(s, a)

Q-Learning Full Algorithm

Initialize Q(s,a),Vs € §,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) « Q(S,A) + oz[R + vy max, Q(S’,a) — Q(S, A)]
S+ 5

until S is terminal

Kinda Large Scale RL

* Reinforcement learning can be used to solve large problems, e.g.
» Backgammon: 10%° states
 Computer Go: 10770 states
* Helicopter: continuous state space

* How can we scale up the model-free methods for prediction and
control from the last two lectures?

Value Function Approximation

* So far we have represented value function by a lookup table
* Every state s has an entry V(s)

* Or every state-action pair s, a has an entry Q(s, a)
* Problem with large MDPs:

* There are too many states and/or actions to store in memory
* |tis too slow to learn the value of each state individually

* Solution for large MDPs:
* Estimate value function with function approximation
V(s, W) 2 vy (s) or (s, a, W) = dq(s, a)
* Generalize from seen states to unseen states
* Update parameter w using MC or TD learning

Types of Value Function Approximators

Action-value Function Approximation

* Approximate the action-value function
a(S, A, w) = qr(S, A)

* Minimize mean-squared error between approximate action-value
fn §(S, A, w) and true action-value fn g, (S, A)

J(w) = Er [(a(S, A) - (S, A, w))?]
* Use stochastic gradient descent to find a local minimum
-1/2V,J(w) = (9,(S, A) - §(S, A, w))V,, (S, A, w)
Aw = a(qn(S, A) - (S, A, w))V,, §(S, A, w)

Deep Neural Nets as function approx.

* Need a Neural Net that is actually able to effectively encode
observations and actions

* For the original Atari, this was CNNs
* These days, itis transformers

* Note that you generally need hundreds of k to millions of steps for
most environments. The bigger your policy the slower this is

Deep Q Network - DQN

* You actually know all the pieces now
* You put Q-learning together with the function approximation

General loop

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity [V
Initialize actlon-value function Q with random weights

for episode = 1, M do
Initialise sequence s; = {1} and preprocessed sequenced ¢; = ¢p(s1)
fort=1,T do
With probability e select a random action a;
otherwise select a; = max, Q*(¢(sz), a;0)
Execute action a; in emulator and observe reward r; and image ;1
Set 5441 = S¢, a¢, T¢41 and preprocess ¢y1 = G(S¢41)
Store transition (¢¢, a;, ¢, ¢r+1) in D
Sample random minibatch of transitions (¢;, a;, 7, @;4+1) from D

Soty. — | Ti for terminal ¢ 1
Y = r; +ymax, Q(Pj41,a’;6) for non-terminal ¢ ;¢

Perform a gradient descent step on (y; — Q(¢;, a;;0))” according to equation 3
end for
end for

General loop

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity [V
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {1} and preprocessed sequenced ¢; = ¢p(s1)
fort=1,T do
Tth probability € select a random action a;

otherwise select a; = max, Q*(¢(sz), a;0)
xecute action a; 1n emulator and observe reward r; and image x;1
Set 5441 = S¢, a¢, T¢41 and preprocess ¢y1 = G(S¢41)
Store transition (¢¢, a;, ¢, ¢r+1) in D
Sample random minibatch of transitions (¢;, a;, 7, @;4+1) from D

Soty. — | Ti for terminal ¢ 1
Y = r; +ymax, Q(Pj41,a’;6) for non-terminal ¢ ;¢

Perform a gradient descent step on (y; — Q(¢;, a;;0))” according to equation 3
end for
end for

General loop

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity [V
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {1} and preprocessed sequenced ¢; = ¢p(s1)
fort=1,T do
With probability e select a random action a;
otherwise select a; = max, Q*(p(sz), a;0)
IExecute action a; in emulator and observe reward 7; and 1mage T¢i1 |
Set 5441 = S¢, 4, Ty41 and preprocess @1 = G(St41)
Store transition (¢¢, a;, ¢, ¢r+1) in D
Sample random minibatch of transitions (¢;, a;, 7, @;4+1) from D

Sety, — 4 I for terminal ?5j+1
Y r; +ymaxq Q(¢jy1,a’;0) for non-terminal ¢,
Perform a gradient descent step on (y; — Q(¢;, a;;0))” according to equation 3
end for

end for

General loop

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity [V
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {1} and preprocessed sequenced ¢; = ¢p(s1)
fort=1,T do
With probability e select a random action a;
otherwise select a; = max, Q*(¢(sz), a;0)
Execute action a; in emulator and observe reward r; and image ;1
| Set s;11 = 84, a4, ;11 and preprocess ¢ri1 = ¢(Sz41) |
Store transition (¢¢, a;, ¢, ¢r+1) in D
Sample random minibatch of transitions (¢;, a;, 7, @;4+1) from D

Soty. — | Ti for terminal ¢ 1
Y = r; +ymax, Q(Pj41,a’;6) for non-terminal ¢ ;¢

Perform a gradient descent step on (y; — Q(¢;, a;;0))” according to equation 3
end for
end for

General loop

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity [V
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {1} and preprocessed sequenced ¢; = ¢p(s1)
fort=1,T do
With probability e select a random action a;
otherwise select a; = max, Q*(¢(sz), a;0)
Execute action a; in emulator and observe reward r; and image ;1
Set 5441 = S¢, as, Ty11 and preprocess ¢i11 = G(S¢41)
| Store transition (¢, at, 7, Pr1) in D |
Sample random minibatch of transitions (¢;, a;, 7, @;4+1) from D

Soty. — | Ti for terminal ¢ 1
Y = r; +ymax, Q(Pj41,a’;6) for non-terminal ¢ ;¢

Perform a gradient descent step on (y; — Q(¢;, a;;0))” according to equation 3
end for
end for

General loop

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {1} and preprocessed sequenced ¢; = ¢p(s1)
fort=1,T do
With probability e select a random action a;
otherwise select a; = max, Q*(¢(sz), a;0)
Execute action a; in emulator and observe reward r; and image ;1
Set 5441 = S¢, a¢, T¢41 and preprocess ¢y1 = G(S¢41)

Store transition Qz. T in D

Sample random minibatch of transitions (¢;, a;, 7, @;4+1) from D

S) for terminal ¢ 1
ty; = r; +ymaxq Q(¢jy1,a’;0) for non-terminal ¢

Perform a gradient descent step on (y; — Q(@;, a;; W according to equation 3
end for
end for

General loop

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity [V
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {1} and preprocessed sequenced ¢; = ¢p(s1)
fort=1,T do
With probability e select a random action a;
otherwise select a; = max, Q*(¢(sz), a;0)
Execute action a; in emulator and observe reward r; and image ;1
Set 5441 = S¢, a¢, T¢41 and preprocess ¢y1 = G(S¢41)
Store transition (¢¢, a;, ¢, ¢r+1) in D
Sample random minibatch of transitions (¢;, a;, 7, @;4+1) from D

Sety, — 4 I for terminal ¢ 1
Y= r; +ymaxq Q(¢jy1,a’;0) for non-terminal ¢,
| Perform a gradient descent step on (y; — Q(¢;, a;; 6’))2 according to equation 3 |
end for

end for

Where are we now?

* GPU go brrrr as solution to large state space RL
* Algorithms still not particularly efficient
* No guarantees on anything

	Slide 1: CSE 190 – Intro to Deep RL 4/22 – Deep RL, pre-LLMs
	Slide 2: Monte Carlo Tree Search
	Slide 3: Why Reinforcement Learning?
	Slide 4: When to use DP
	Slide 5: Generalized Policy Iteration
	Slide 6: Generalized Policy Iteration with Fn Approximation + Monte Carlo Eval
	Slide 7: Issues with Monte Carlo estimates
	Slide 8: How to fix? Temporal Difference
	Slide 9: TD(0)  TD(∞)
	Slide 10: TD Advantages
	Slide 11: TD Disadvantages
	Slide 12: How to fix state space is very large
	Slide 13: On Policy TD Learning - SARSA
	Slide 14: Off-policy Learning
	Slide 15: Q-Learning
	Slide 16: Q-Learning
	Slide 17: Q-Learning
	Slide 18: Q-Learning Full Algorithm
	Slide 19: Kinda Large Scale RL
	Slide 20: Value Function Approximation
	Slide 21: Types of Value Function Approximators
	Slide 22: Action-value Function Approximation
	Slide 23: Deep Neural Nets as function approx.
	Slide 24: Deep Q Network - DQN
	Slide 25: General loop
	Slide 26: General loop
	Slide 27: General loop
	Slide 28: General loop
	Slide 29: General loop
	Slide 30: General loop
	Slide 31: General loop
	Slide 32: Where are we now?

