
CSE 190 – Intro to Deep RL
4/22 – Deep RL, pre-LLMs

Prithviraj Ammanabrolu

Thanks to David Silver’s DeepMind RL Course and Rich Sutton’s RL
Book. Some slides were adapted form there.

Monte Carlo Tree Search

• 4 phases of building out and simulating paths along a search tree
• Various forms of this used in everything from Alpha Zero to

modern LLM inference
• For arbitrary problem with start state s0 and actions ai

• All states have attributes:
• Total simulation reward Q(s) and
• Total no. of visits N(s)

Why Reinforcement Learning?

• Reinforcement Learning:
• The environment is initially unknown
• The agent interacts with the environment
• The agent improves its policy

• Planning:
• A model of the environment is known
• The agent performs computations with its model (without any external

interaction)
• The agent improves its policy a.k.a. deliberation, reasoning, introspection,

pondering, thought, search

When to use DP

Dynamic Programming is a very general solution method for problems
which have two properties:
• Optimal substructure:

• Principle of optimality applies
• Optimal solution can be decomposed into subproblems

• Overlapping subproblems:
• Subproblems recur many times
• Solutions can be cached and reused

• Markov decision processes satisfy both properties Bellman equation
gives recursive decomposition Value function stores and reuses
solutions

Generalized Policy Iteration

• Both are iterative versions of this

Generalized Policy Iteration
with Fn Approximation
+ Monte Carlo Eval

You can’t fully evaluate the entire state space each time

Issues with Monte Carlo estimates

• Need returns for whole trajectory
• The larger the state space is and the longer the horizon, the harder

it is to get good estimates
• High variance, very dependent on “getting lucky” and seeing high

return trajectories

How to fix? Temporal Difference

• With Monte Carlo, we update the value function from a complete
episode, and so we use the actual accurate discounted return of
this episode.

• With TD Learning, we update the value function from a step, and we
replace Gt, which we don’t know, with an estimated return called
the TD target – a bootstrapping method similar to DP

TD(0) → TD(∞)

TD Advantages

• Temporal-difference (TD) learning has several advantages over
Monte-Carlo (MC)
• Lower variance
• Online
• Incomplete sequences

• Natural idea: use TD instead of MC in our control loop Apply TD to
Q(S, A) Use ε-greedy policy improvement Update every time-step

TD Disadvantages

• Bootstrapping means you are chasing a moving target, stability of
training very dependent on initialization

How to fix state space is very large

1. Learn from prior experiences

2. Function approximation

On Policy TD Learning - SARSA

• On Policy = learning the policy you are evaluating
• Will not cover SARSA as it is not really used anymore but will cover

On Policy later on

Off-policy Learning

• Evaluate target policy π(a|s) to compute vπ(s) or qπ(s, a)
• While following behavior policy µ(a|s)

{S1, A1, R2, ..., ST } ∼ µ
Why is this important?
• Learn from observing humans or other agents
• Re-use experience generated from old policies π1, π2, ..., πt−1

• Learn about optimal policy while following exploratory policy
• Learn about multiple policies while following one policy

Q-Learning

• We now consider off-policy learning of action-values Q(s, a)
• Next action is chosen using behavior policy At+1 ∼ µ(·|St)
• But we consider alternative successor action A’ ∼ π(·|St)
• And update Q(St , At) towards value of alternative action from

policy you’re actually evaluating
 Q(St , At) ← Q(St , At) + α Rt+1 + γQ(St+1, A’) − Q(St , At)

Q-Learning

• We now allow both behavior and target policies to improve
• The target policy π is greedy w.r.t. Q(s, a)
• π(St+1) = argmaxa’ Q(St+1, a’)
• The behavior policy µ is e.g. -greedy w.r.t. Q(s, a)
• The Q-learning target then simplifies:
 Rt+1 + γQ(St+1, A 0)
 =Rt+1 + γQ(St+1, argmaxa’ Q(St+1, a’))
 =Rt+1 + maxa’ γQ(St+1, a’)

Q-Learning

• Q(S, A) ← Q(S, A) + α (R + γ maxa’ Q(S’, a’) − Q(S, A))
• Q-learning control converges to the optimal action-value function,

Q(s, a) → q∗(s, a)

Q-Learning Full Algorithm

Kinda Large Scale RL

• Reinforcement learning can be used to solve large problems, e.g.
• Backgammon: 1020 states
• Computer Go: 10170 states
• Helicopter: continuous state space

• How can we scale up the model-free methods for prediction and
control from the last two lectures?

Value Function Approximation

• So far we have represented value function by a lookup table
• Every state s has an entry V(s)
• Or every state-action pair s, a has an entry Q(s, a)
• Problem with large MDPs:

• There are too many states and/or actions to store in memory
• It is too slow to learn the value of each state individually

• Solution for large MDPs:
• Estimate value function with function approximation
 ොv(s, w) ≈ vπ(s) or ොq(s, a, w) ≈ qπ(s, a)
• Generalize from seen states to unseen states
• Update parameter w using MC or TD learning

Types of Value Function Approximators

Action-value Function Approximation

• Approximate the action-value function
 ොq(S, A, w) ≈ qπ(S, A)
• Minimize mean-squared error between approximate action-value

fn ොq(S, A, w) and true action-value fn qπ(S, A)
 J(w) = Eπ [(qπ(S, A) − ොq(S, A, w))2]
• Use stochastic gradient descent to find a local minimum
 − 1/2 ∇wJ(w) = (qπ(S, A) − ොq(S, A, w))∇w ොq(S, A, w)
 ∆w = α(qπ(S, A) − ොq(S, A, w))∇w ොq(S, A, w)

Deep Neural Nets as function approx.

• Need a Neural Net that is actually able to effectively encode
observations and actions

• For the original Atari, this was CNNs
• These days, it is transformers
• Note that you generally need hundreds of k to millions of steps for

most environments. The bigger your policy the slower this is

Deep Q Network - DQN

• You actually know all the pieces now
• You put Q-learning together with the function approximation

General loop

General loop

General loop

General loop

General loop

General loop

General loop

Where are we now?

• GPU go brrrr as solution to large state space RL
• Algorithms still not particularly efficient
• No guarantees on anything

	Slide 1: CSE 190 – Intro to Deep RL 4/22 – Deep RL, pre-LLMs
	Slide 2: Monte Carlo Tree Search
	Slide 3: Why Reinforcement Learning?
	Slide 4: When to use DP
	Slide 5: Generalized Policy Iteration
	Slide 6: Generalized Policy Iteration with Fn Approximation + Monte Carlo Eval
	Slide 7: Issues with Monte Carlo estimates
	Slide 8: How to fix? Temporal Difference
	Slide 9: TD(0)  TD(∞)
	Slide 10: TD Advantages
	Slide 11: TD Disadvantages
	Slide 12: How to fix state space is very large
	Slide 13: On Policy TD Learning - SARSA
	Slide 14: Off-policy Learning
	Slide 15: Q-Learning
	Slide 16: Q-Learning
	Slide 17: Q-Learning
	Slide 18: Q-Learning Full Algorithm
	Slide 19: Kinda Large Scale RL
	Slide 20: Value Function Approximation
	Slide 21: Types of Value Function Approximators
	Slide 22: Action-value Function Approximation
	Slide 23: Deep Neural Nets as function approx.
	Slide 24: Deep Q Network - DQN
	Slide 25: General loop
	Slide 26: General loop
	Slide 27: General loop
	Slide 28: General loop
	Slide 29: General loop
	Slide 30: General loop
	Slide 31: General loop
	Slide 32: Where are we now?

