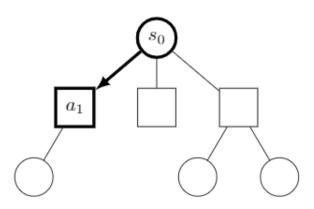
CSE 190 – Intro to Deep RL 4/22 – Deep RL, pre-LLMs

Prithviraj Ammanabrolu

Monte Carlo Tree Search

- 4 phases of building out and simulating paths along a search tree
- Various forms of this used in everything from Alpha Zero to modern LLM inference
- For arbitrary problem with start state s₀ and actions a_i
- All states have attributes:
 - Total simulation reward Q(s) and
 - Total no. of visits N(s)



Why Reinforcement Learning?

- Reinforcement Learning:
 - The environment is initially unknown
 - The agent interacts with the environment
 - The agent improves its policy
- Planning:
 - A model of the environment is known
 - The agent performs computations with its model (without any external interaction)
 - The agent improves its policy a.k.a. deliberation, reasoning, introspection, pondering, thought, search

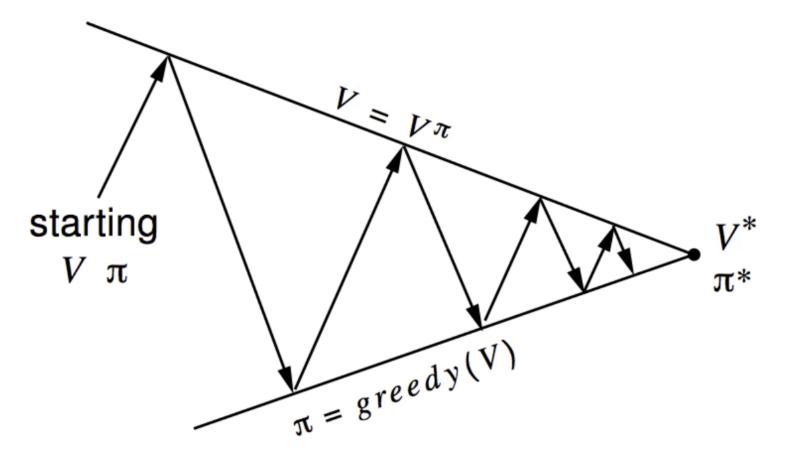
When to use DP

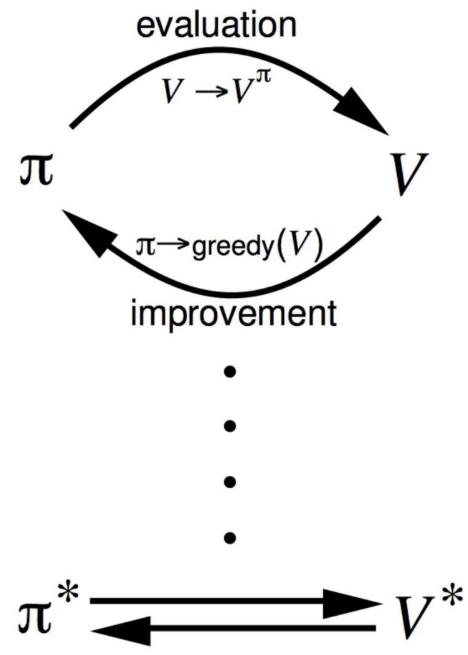
Dynamic Programming is a very general solution method for problems which have two properties:

- Optimal substructure:
 - Principle of optimality applies
 - Optimal solution can be decomposed into subproblems
- Overlapping subproblems:
 - Subproblems recur many times
 - Solutions can be cached and reused
- Markov decision processes satisfy both properties Bellman equation gives recursive decomposition Value function stores and reuses solutions

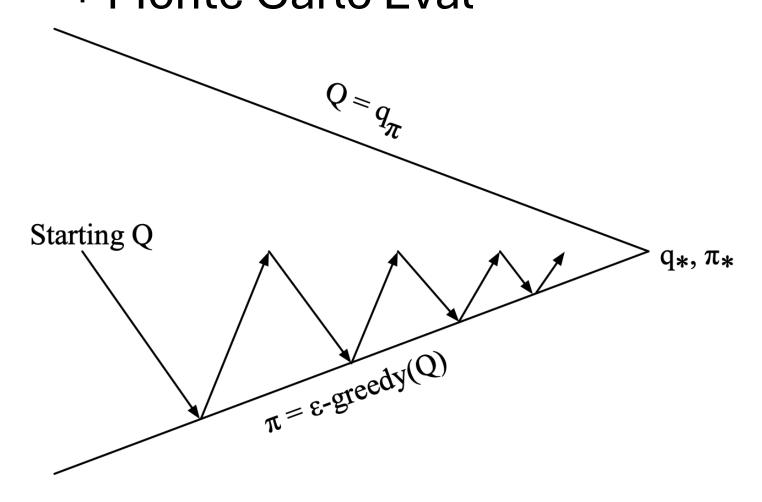
Generalized Policy Iteration

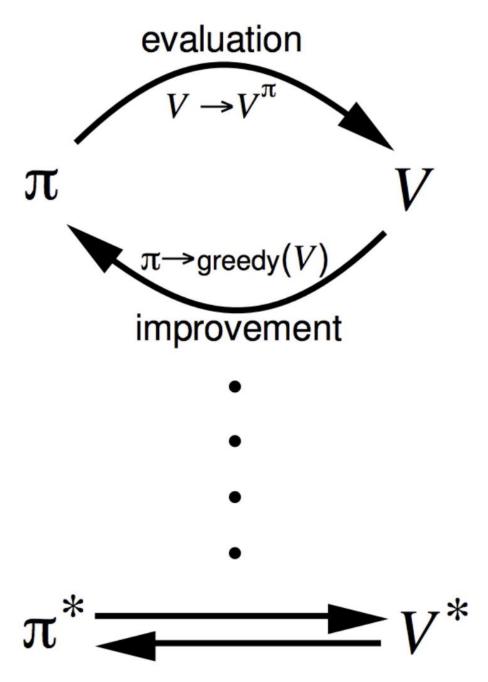
Both are iterative versions of this





Generalized Policy Iteration with Fn Approximation + Monte Carlo Eval





You can't fully evaluate the entire state space each time

Issues with Monte Carlo estimates

- Need returns for whole trajectory
- The larger the state space is and the longer the horizon, the harder it is to get good estimates
- High variance, very dependent on "getting lucky" and seeing high return trajectories

How to fix? Temporal Difference

• With *Monte Carlo*, we update the value function from a complete episode, and so we **use the actual accurate discounted return of this episode.**

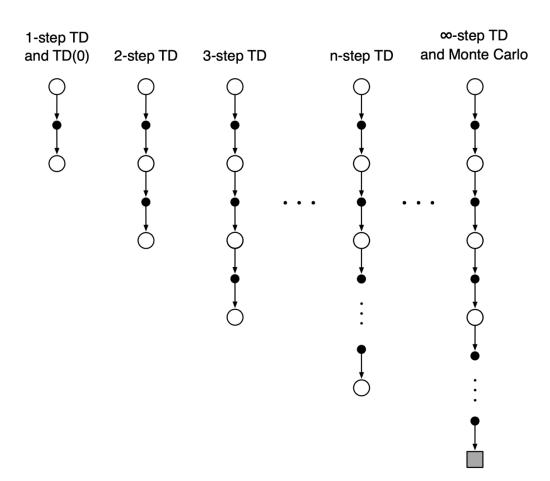
Monte Carlo:
$$V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)]$$

With TD Learning, we update the value function from a step, and we replace G_t, which we don't know, with an estimated return called the TD target – a bootstrapping method similar to DP

TD Learning:
$$V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

$TD(0) \rightarrow TD(\infty)$

$$V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$



TD Advantages

- Temporal-difference (TD) learning has several advantages over Monte-Carlo (MC)
 - Lower variance
 - Online
 - Incomplete sequences
- Natural idea: use TD instead of MC in our control loop Apply TD to Q(S, A) Use ϵ -greedy policy improvement Update every time-step

TD Disadvantages

 Bootstrapping means you are chasing a moving target, stability of training very dependent on initialization

How to fix state space is very large

1. Learn from prior experiences

2. Function approximation

On Policy TD Learning - SARSA

- On Policy = learning the policy you are evaluating
- Will not cover SARSA as it is not really used anymore but will cover On Policy later on

Off-policy Learning

- Evaluate target policy $\pi(a|s)$ to compute $v_{\pi}(s)$ or $q_{\pi}(s,a)$
- While following behavior policy µ(a|s)

$$\{S_1, A_1, R_2, ..., S_T\} \sim \mu$$

Why is this important?

- Learn from observing humans or other agents
- Re-use experience generated from old policies $\pi_1, \pi_2, ..., \pi_{t-1}$
- Learn about optimal policy while following exploratory policy
- Learn about multiple policies while following one policy

Q-Learning

- We now consider off-policy learning of action-values Q(s, a)
- Next action is chosen using behavior policy $A_{t+1} \sim \mu(\cdot|S_t)$
- But we consider alternative successor action A' $\sim \pi(\cdot|S_t)$
- And update Q(S_t, A_t) towards value of alternative action from policy you're actually evaluating

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha R_{t+1} + \gamma Q(S_{t+1}, A') - Q(S_t, A_t)$$

Q-Learning

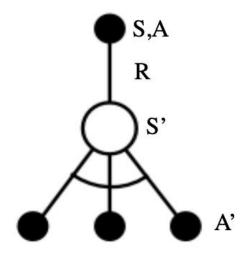
- We now allow both behavior and target policies to improve
- The target policy π is greedy w.r.t. Q(s, a)
- $\pi(S_{t+1}) = argmax_{a'}Q(S_{t+1}, a')$
- The behavior policy μ is e.g. -greedy w.r.t. Q(s, a)
- The Q-learning target then simplifies:

$$R_{t+1} + \gamma Q(S_{t+1}, A 0)$$

= $R_{t+1} + \gamma Q(S_{t+1}, argmax_a, Q(S_{t+1}, a'))$
= $R_{t+1} + max_a, \gamma Q(S_{t+1}, a')$

Q-Learning

- $Q(S, A) \leftarrow Q(S, A) + \alpha (R + \gamma \max_{a'} Q(S', a') Q(S, A))$
- Q-learning control converges to the optimal action-value function,
 Q(s, a) → q*(s, a)



Q-Learning Full Algorithm

```
Initialize Q(s, a), \forall s \in S, a \in A(s), arbitrarily, and Q(terminal-state, \cdot) = 0
Repeat (for each episode):
   Initialize S
   Repeat (for each step of episode):
       Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
       Take action A, observe R, S'
       Q(S,A) \leftarrow Q(S,A) + \alpha \left[ R + \gamma \max_{a} Q(S',a) - Q(S,A) \right]
      S \leftarrow S';
   until S is terminal
```

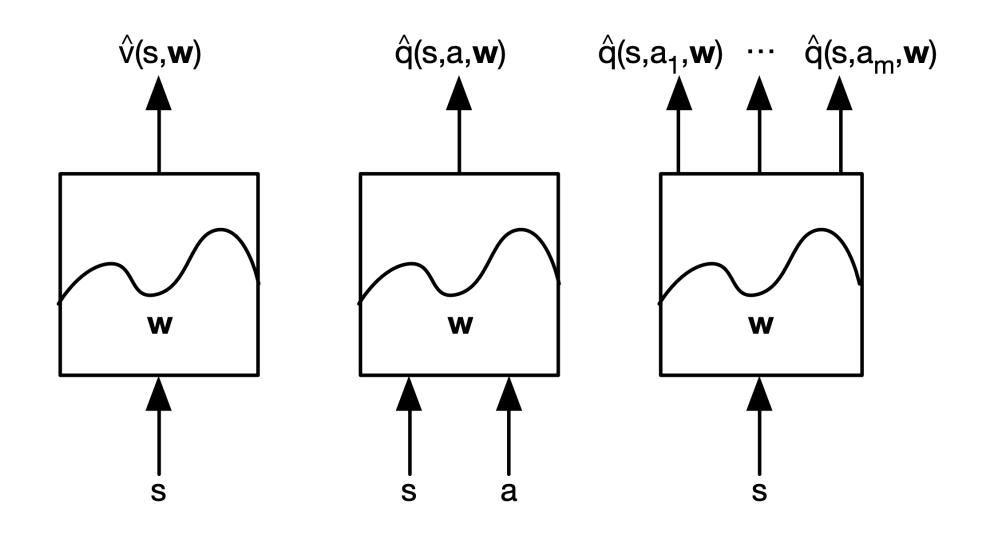
Kinda Large Scale RL

- Reinforcement learning can be used to solve large problems, e.g.
 - Backgammon: 10²⁰ states
 - Computer Go: 10¹⁷⁰ states
 - Helicopter: continuous state space
- How can we scale up the model-free methods for prediction and control from the last two lectures?

Value Function Approximation

- So far we have represented value function by a lookup table
- Every state s has an entry V(s)
- Or every state-action pair s, a has an entry Q(s, a)
- Problem with large MDPs:
 - There are too many states and/or actions to store in memory
 - It is too slow to learn the value of each state individually
- Solution for large MDPs:
 - Estimate value function with function approximation $\hat{v}(s, w) \approx v_{\pi}(s)$ or $\hat{q}(s, a, w) \approx q_{\pi}(s, a)$
 - Generalize from seen states to unseen states
 - Update parameter w using MC or TD learning

Types of Value Function Approximators



Action-value Function Approximation

Approximate the action-value function

$$\hat{q}(S, A, w) \approx q_{\pi}(S, A)$$

• Minimize mean-squared error between approximate action-value fn $\hat{q}(S, A, w)$ and true action-value fn $q_{\pi}(S, A)$

$$J(w) = E_{\pi} [(q_{\pi}(S, A) - \hat{q}(S, A, w))^2]$$

Use stochastic gradient descent to find a local minimum

$$-1/2 \nabla_{w} J(w) = (q_{\pi}(S, A) - \hat{q}(S, A, w)) \nabla_{w} \hat{q}(S, A, w)$$

$$\Delta w = \alpha(q_{\pi}(S, A) - \hat{q}(S, A, w))\nabla_{w} \hat{q}(S, A, w)$$

Deep Neural Nets as function approx.

- Need a Neural Net that is actually able to effectively encode observations and actions
- For the original Atari, this was CNNs
- These days, it is transformers
- Note that you generally need hundreds of k to millions of steps for most environments. The bigger your policy the slower this is

Deep Q Network - DQN

- You actually know all the pieces now
- You put Q-learning together with the function approximation

end for

```
Algorithm 1 Deep Q-learning with Experience Replay
  Initialize replay memory \mathcal{D} to capacity N
  Initialize action-value function Q with random weights
  for episode = 1, M do
       Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
       for t = 1, T do
            With probability \epsilon select a random action a_t
            otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
            Execute action a_t in emulator and observe reward r_t and image x_{t+1}
            Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
            Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
            Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal{D}
           Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
            Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 according to equation 3
       end for
```

```
Algorithm 1 Deep Q-learning with Experience Replay
   Initialize replay memory \mathcal D to capacity N
   Initialize action-value function Q with random weights
   for episode = 1, M do
       Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
       for t = 1, T do
            With probability \epsilon select a random action a_t
            otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
            Execute action a_t in emulator and observe reward r_t and image x_{t+1}
            Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
            Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
            Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal{D}
            Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
            Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 according to equation 3
       end for
   end for
```

```
Algorithm 1 Deep Q-learning with Experience Replay
   Initialize replay memory \mathcal D to capacity N
   Initialize action-value function Q with random weights
   for episode = 1, M do
       Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
       for t = 1, T do
            With probability \epsilon select a random action a_t
            otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
            Execute action a_t in emulator and observe reward r_t and image x_{t+1}
            Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
            Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
            Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal{D}
            Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
            Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 according to equation 3
       end for
   end for
```

```
Algorithm 1 Deep Q-learning with Experience Replay
   Initialize replay memory \mathcal D to capacity N
   Initialize action-value function Q with random weights
   for episode = 1, M do
       Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
       for t = 1, T do
            With probability \epsilon select a random action a_t
            otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
            Execute action a_t in emulator and observe reward r_t and image x_{t+1}
            Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
            Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
            Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal{D}
            Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
            Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 according to equation 3
       end for
   end for
```

```
Algorithm 1 Deep Q-learning with Experience Replay
   Initialize replay memory \mathcal D to capacity N
   Initialize action-value function Q with random weights
   for episode = 1, M do
       Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
       for t = 1, T do
            With probability \epsilon select a random action a_t
            otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
            Execute action a_t in emulator and observe reward r_t and image x_{t+1}
            Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
            Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
            Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal D
           Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
            Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 according to equation 3
       end for
   end for
```

end for

Algorithm 1 Deep Q-learning with Experience Replay

```
Initialize replay memory \mathcal{D} to capacity N
Initialize action-value function Q with random weights
for episode = 1, M do
    Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
    for t = 1, T do
         With probability \epsilon select a random action a_t
         otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
         Execute action a_t in emulator and observe reward r_t and image x_{t+1}
         Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
         Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
         Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal{D}
        Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
         Perform a gradient descent step on (y_i - Q(\phi_i, a_i; \theta))^2 according to equation 3
    end for
```

Algorithm 1 Deep Q-learning with Experience Replay

```
Initialize replay memory \mathcal{D} to capacity N
Initialize action-value function Q with random weights
for episode = 1, M do
    Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
    for t = 1, T do
         With probability \epsilon select a random action a_t
         otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
         Execute action a_t in emulator and observe reward r_t and image x_{t+1}
         Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
          Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
         Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal{D}
         Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_i + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
        Perform a gradient descent step on (y_i - Q(\phi_i, a_i; \theta))^2 according to equation 3
```

end for

end for

Where are we now?

- GPU go brrrr as solution to large state space RL
- Algorithms still not particularly efficient
- No guarantees on anything