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Thanks to David Silver’s DeepMind RL Course and Rich Sutton’s RL 
Book. Some slides were adapted form there.



Monte Carlo Tree Search

• 4 phases of building out and simulating paths along a search tree
• Various forms of this used in everything from Alpha Zero to 

modern LLM inference
• For arbitrary problem with start state s0 and actions ai

• All states have attributes: 
• Total simulation reward Q(s) and 
• Total no. of visits N(s)



Why Reinforcement Learning?

• Reinforcement Learning: 
• The environment is initially unknown 
• The agent interacts with the environment 
• The agent improves its policy 

• Planning: 
• A model of the environment is known 
• The agent performs computations with its model (without any external 

interaction) 
• The agent improves its policy a.k.a. deliberation, reasoning, introspection, 

pondering, thought, search



When to use DP

Dynamic Programming is a very general solution method for problems 
which have two properties: 
• Optimal substructure: 

• Principle of optimality applies 
• Optimal solution can be decomposed into subproblems 

• Overlapping subproblems: 
• Subproblems recur many times 
• Solutions can be cached and reused 

• Markov decision processes satisfy both properties Bellman equation 
gives recursive decomposition Value function stores and reuses 
solutions



Generalized Policy Iteration

• Both are iterative versions of this



Generalized Policy Iteration 
with Fn Approximation 
+ Monte Carlo Eval

You can’t fully evaluate the entire state space each time



Issues with Monte Carlo estimates

• Need returns for whole trajectory
• The larger the state space is and the longer the horizon, the harder 

it is to get good estimates
• High variance, very dependent on “getting lucky” and seeing high 

return trajectories



How to fix? Temporal Difference

• With Monte Carlo, we update the value function from a complete 
episode, and so we use the actual accurate discounted return of 
this episode.

• With TD Learning, we update the value function from a step, and we 
replace Gt, which we don’t know, with an estimated return called 
the TD target – a bootstrapping method similar to DP



TD(0) → TD(∞)



TD Advantages

• Temporal-difference (TD) learning has several advantages over 
Monte-Carlo (MC) 
• Lower variance 
• Online 
• Incomplete sequences 

• Natural idea: use TD instead of MC in our control loop Apply TD to 
Q(S, A) Use ε-greedy policy improvement Update every time-step



TD Disadvantages

• Bootstrapping means you are chasing a moving target, stability of 
training very dependent on initialization



How to fix state space is very large

1. Learn from prior experiences

2. Function approximation



On Policy TD Learning - SARSA

• On Policy = learning the policy you are evaluating
• Will not cover SARSA as it is not really used anymore but will cover 

On Policy later on



Off-policy Learning

• Evaluate target policy π(a|s) to compute vπ(s) or qπ(s, a) 
• While following behavior policy µ(a|s) 

{S1, A1, R2, ..., ST } ∼ µ 
Why is this important? 
• Learn from observing humans or other agents 
• Re-use experience generated from old policies π1, π2, ..., πt−1 

• Learn about optimal policy while following exploratory policy 
• Learn about multiple policies while following one policy



Q-Learning

• We now consider off-policy learning of action-values Q(s, a) 
• Next action is chosen using behavior policy At+1 ∼ µ(·|St) 
• But we consider alternative successor action A’ ∼ π(·|St) 
• And update Q(St , At) towards value of alternative action from 

policy you’re actually evaluating
 Q(St , At) ← Q(St , At) + α Rt+1 + γQ(St+1, A’) − Q(St , At) 



Q-Learning

• We now allow both behavior and target policies to improve 
• The target policy π is greedy w.r.t. Q(s, a) 
• π(St+1) = argmaxa’ Q(St+1, a’) 
• The behavior policy µ is e.g. -greedy w.r.t. Q(s, a) 
• The Q-learning target then simplifies: 
 Rt+1 + γQ(St+1, A 0 ) 
 =Rt+1 + γQ(St+1, argmaxa’ Q(St+1, a’))
 =Rt+1 + maxa’ γQ(St+1, a’)



Q-Learning

• Q(S, A) ← Q(S, A) + α (R + γ maxa’ Q(S’, a’) − Q(S, A))
• Q-learning control converges to the optimal action-value function, 

Q(s, a) → q∗(s, a)



Q-Learning Full Algorithm



Kinda Large Scale RL

• Reinforcement learning can be used to solve large problems, e.g. 
• Backgammon: 1020 states 
• Computer Go: 10170 states 
• Helicopter: continuous state space 

• How can we scale up the model-free methods for prediction and 
control from the last two lectures?



Value Function Approximation

• So far we have represented value function by a lookup table 
• Every state s has an entry V(s) 
• Or every state-action pair s, a has an entry Q(s, a) 
• Problem with large MDPs: 

• There are too many states and/or actions to store in memory 
• It is too slow to learn the value of each state individually 

• Solution for large MDPs: 
• Estimate value function with function approximation 
  ොv(s, w) ≈ vπ(s) or ොq(s, a, w) ≈ qπ(s, a) 
• Generalize from seen states to unseen states 
• Update parameter w using MC or TD learning



Types of Value Function Approximators



Action-value Function Approximation

• Approximate the action-value function 
  ොq(S, A, w) ≈ qπ(S, A) 
• Minimize mean-squared error between approximate action-value 

fn ොq(S, A, w) and true action-value fn qπ(S, A) 
 J(w) = Eπ [(qπ(S, A) − ොq(S, A, w))2]
• Use stochastic gradient descent to find a local minimum 
 − 1/2 ∇wJ(w) = (qπ(S, A) − ොq(S, A, w))∇w ොq(S, A, w) 
 ∆w = α(qπ(S, A) − ොq(S, A, w))∇w ොq(S, A, w)



Deep Neural Nets as function approx.

• Need a Neural Net that is actually able to effectively encode 
observations and actions

• For the original Atari, this was CNNs
• These days, it is transformers
• Note that you generally need hundreds of k to millions of steps for 

most environments. The bigger your policy the slower this is



Deep Q Network - DQN

• You actually know all the pieces now
• You put Q-learning together with the function approximation



General loop



General loop



General loop



General loop



General loop



General loop



General loop



Where are we now?

• GPU go brrrr as solution to large state space RL
• Algorithms still not particularly efficient
• No guarantees on anything
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