CSE 190 - Intro to Deep RL
Search for
Planning in Simulations

Prithviraj Ammanabrolu

Logistics

* Group signups are due Thursday
* |deally 4-6 members

Basic components of a simulation

* S = set of all states
* propositions that are true: you are in a house, door is open, knife in drawer

* A=set of all actions
* take knife from drawer, walk through door
e T =transition matrixT: (S, A)=2>S
* (you are in a house & door is open, walk through door) = you are outside

There are pre-conditions that need to be met to perform a certain
action, and post-conditions that are true after

What’s in a PDDL task?

* Objects: Things in the world that interest us.

* Predicates: Properties of objects that we are interested in; can be
true or false.

* |Initial state: The state of the world that we start in.
* Goal specification: Things that we want to be true.
* Actions/Operators: Ways of changing the state of the world.

2 .pddl files, domain and problem

Slide credits for most PDDL stuff: Malte Helmert and Sheila Mclllraith UofT.

You have a simulation, now what?

* You need to plan out a policy
* Sequence of actions to get from start state to goal state

* A *plan™ gives you a way of getting said policy
* Can be expressed as constraints on actions you can perform

How to get a plan?

* Search is a way of getting possible plans for a given spec

Search Terminology

* State Space Search - each state is a node on the search tree, go
from there

* Planning Space Search — searching through space of possible
plans or constraints on actions

* Satisficing — looking longer and longer for a good enough solution
* Optimal — looking for the best possible solution there is

Standard (but not necessary) Assumptions

* No environment stochasticity, exact post conditions always
manifest once action is executed

* No agent stochasticity, actions are always executed as planned

* Think about ways not having these assumptions would
complicate things in the methods we talk about here on out

Properties of Forward Search

* Sound: plans generated by the traces will guarantee a solution if
executed

* Complete: if a solution exists, then at least one of the search’s
traces will be a solution

Forward Search

* Some deterministic implementations of forward search:
* breadth-first search
* depth-first search
* best-first search (e.g., A¥)
* dreedy search

* Breadth-first and best-first search are sound and complete But they
usually aren’t practical, requiring too much memory

* Memory requirementis exponential in the length of the solution

* In practice, more likely to use depth-first search or greedy search
* Worst-case memory requirement is linear in the length of the solution
* In general, sound but not complete
* But classical planning has only finitely many states
* Thus, can make depth-first search complete by doing loop-checking

Forward Search Example —
BlocksWorld

unstack(x,y)
Pre: on(x,y), clear(x), handempty
Eff: ~on(x,y), ~clear(x), ~handempty,
holding(x), clear(y)

stack(x,y)
Pre: holding(x), clear(y)

Eff: ~holding(x), ~clear(y),
on(x,y), clear(x), handempty

pickup(x)
Pre: ontable(x), clear(x), handempty
Eff: ~ontable(x), ~clear(x), ~handempty, holding(x)

putdown(x)
Pre: holding(x)
Eff: ~holding(x), ontable(x), clear(x), handempty

Forward Search Example

C

a ‘b‘ Pickup(b) 3 allb

Initial state Goal state

Forward Search Issues

* Branching factor - lots of possible states and actions,
deterministic searches waste time trying a bunch of unnecessary
stuff

e State and action spaces can blow up memory and compute costs

Step1 Step 2 Step 3 Ste_zrp 4

Open mailbox with colleague Open mailbox a colleague

Go north in comma Go north in show

Examine house on magic Examine on magical
my above The me above man
four below [scrolls It four scrolls
shoulder until some Carry shoulder some

movie]_,[was bronze Show movie bronze
Mount bottom over cyclops was quite
Cross box under Cross box under
Shred Bozbar Shred Bozbar
Adjust @ Adjust @

Imagine a controller with ~50000 buttons. How to scale language planning?
(Game of Go ~250, Chess ~35)

Backward Search

* For forward search, we started at the initial state and computed
state transitions
* hew state =T(s,a)

* For backward search, we start at the goal and compute inverse
state transitions
* new set of subgoals =T'(g,a)

* To define T'(g,a), must first define relevance: An action a is
relevant for a goal g if
* a makes at least one of g’s literals true, g n effects(a) # @

* a does not make any of g’s literals false, g + n effects —(a) =@ and g- n
effects+(a)=0

Backward Search

* To define T'(g,a), must first define relevance: An action a is
relevant for a goal g if
* a makes at least one of g’s literals true, g n effects(a) # @

* a does not make any of g’s literals false, g* n effects’(a) = @ and.
g n effects™(a) =0

* [f aisrelevant forg, then T(g,a) = (g effects(a)) U precond(a)

* Otherwise, T'(g,a) is undefined

Backward Search Example

C

—

a ‘b‘

-

Initial state

S',

S.

Goal state

Backward Search Issues

* Branching factor

* an operator o that is relevant for g may have many instances a,, a,, ..., a,
such that each a;’s input state might be unreachable from the initial state

* Goal states are actually described by constraints instead of exact
list of propositions

* Generating predecessor states (inverting Transition matrix) is hard

Mitigations for Such Issues

* Pruning state or action space ... somehow
1. Just describe constraints that need to be satisfied
2. Find a heuristic to move effectively through state space

Total Order and Partial Order Plans

* Exact order of actions may not matter

* |f you can break down problem into subproblems, partial planning
may be easier 2 some actions and constraints on when they can
be executed

* Partially ordered plans = planning space search (rather than state
space search)

Total Order and Partial Order Plans

Partial-Order Plan: Total-Order Plans:
Start Start Start Start Start Start Start
/ \ Right | [Right Left Left Right Left
Sock Sock Sock Sock Sock Sock
Left Right
Sock Sock * ‘ * * * *
Left Left Right Right Right Left
Sock Sock Sock Sock Shoe Shoe
LeftSockOn RightSockOn + * * * * *
: Right Left Right Left Left Right
Left Right
Shoe SLgoe Sh+oe Sh:e Shfe Sh+oe So;:k So+ck
Left Right Left Right Left Right
Shoe Shoe Shoe Shoe Shoe Shoe
LeftShoeOn, RightShoeOn + * * + * *
Finish Finish Finish Finish Finish Finish Finish

Heuristic Planning - STRIPS

* One of the first planning algorithms (Shakey the robot)

* T € the empty plan

* do a modified backward search from g

* ** each new subgoal is precond(a)

* when you find an action that’s executable in the current state, then go
forward on the current search path as far as possible, executing actions

and appending them to 1t
* repeat until all goals are satisfied

Heuristic Planning - STRIPS

g, satisfied in s, g; w

current search path

STRIPS Example

* Exercise, solve this like STRIPS would

C b
a ‘b‘ 2

Initial state Goal state

Limitation of STRIPS

* Exercise, solve this like STRIPS would
* Move aontopofb
* Move b ontop of c
* Contradictory subgoals

C b
a ‘b‘ ¢

Initial state Goal state

Simulation Search

* Evolution of heuristic search, the model of the world is the
heuristic that decides how the agent moves forward

* Use the simulation to build estimates of the “value” of beingin a
state — intuitively, if | am in a state what is the likelihood | will win

Monte Carlo Methods

* A set of methods that focus on learning better from simulated
experiences collected by interacting with an environment

* When to use? You have a way of easily simulating an environment
but it is too complex to solve deterministically with planning /
search

Monte Carlo Tree Search

* 4 phases of building out and simulating paths along a search tree

* Various forms of this used in everything from Alpha Zero to
modern LLM inference

* For arbitrary problem with start state s;and actions a;

e All states have attributes: ()
* Total simulation reward Q(s) and /.\

* Total no. of visits N(s) ay

, VAR
(—4\/ ,/'—"\: >’_‘\
_/ U

MCTS Part 1 - Selection

* From the current state, pick an
action to perform

* For now, assume we pick
randomly

 Update N(s) as you pick a new
state

SELECTION

MCTS Part 2 - Expansion

e Execute transition

* I[f resultant state is a terminal state,
observe result (reward)

EXPANSION

oy

MCTS Part 3 — Simulation / Rollout

fitisn’t a terminal state, finish a
olayout until it is

~or now, we will “cheat” and directly
use our simulation for this

RoLLour
TN

| S0)

MCTS Part 4 — Backpropogation

* Add the reward of the simulated
path to all node scores, this gives

you Q(s)

BACKPROPACGATION

5]

q</
C_/'

b (
N

g
N

Improvements to MCTS Components

* Improvements are possible for each of the parts | talked about

* Think about that it would take to improve selection / expansion
phases

Upper Confidence Trees (UCT)

* A way of improving the selection phase by treating selection as a
multi-arm bandit problem: which possible action to select that
maximizes the possible payout (reward) in the future

In N (v)
N(v;) N (v;)

UCT(’U,I;, ’U) —

Upper Confidence Trees (UCT)

* A way of improving the selection phase by treating selection as a
multi-arm bandit problem: which possible action to select that
maximizes the possible payout (reward) in the future

Exploit

Upper Confidence Trees (UCT)

* A way of improving the selection phase by treating selection as a
multi-arm bandit problem: which possible action to select that
maximizes the possible payout (reward) in the future

Q(’Uz')

UCT(’UZ',’U) - N(’Uz) |

Exploit Explore

Improvements to MCTS Components

* Improvements are possible for each of the parts | talked about

* Think about that it would take to improve selection / expansion
phases

* Canyou go further? How to improve the simulation phase?
* Canyou add learning in here somehow?

	Slide 1: CSE 190 - Intro to Deep RL Search for Planning in Simulations
	Slide 2: Logistics
	Slide 3: Basic components of a simulation
	Slide 4: What’s in a PDDL task?
	Slide 5: You have a simulation, now what?
	Slide 6: How to get a plan?
	Slide 7: Search Terminology
	Slide 8: Standard (but not necessary) Assumptions
	Slide 9: Properties of Forward Search
	Slide 10: Forward Search
	Slide 11: Forward Search Example – BlocksWorld
	Slide 12: Forward Search Example
	Slide 13: Forward Search Issues
	Slide 14
	Slide 15: Backward Search
	Slide 16: Backward Search
	Slide 17: Backward Search Example
	Slide 18: Backward Search Issues
	Slide 19: Mitigations for Such Issues
	Slide 20: Total Order and Partial Order Plans
	Slide 21: Total Order and Partial Order Plans
	Slide 22: Heuristic Planning - STRIPS
	Slide 23: Heuristic Planning - STRIPS
	Slide 24: STRIPS Example
	Slide 25: Limitation of STRIPS
	Slide 26: Simulation Search
	Slide 27: Monte Carlo Methods
	Slide 28: Monte Carlo Tree Search
	Slide 29: MCTS Part 1 - Selection
	Slide 30: MCTS Part 2 - Expansion
	Slide 31: MCTS Part 3 – Simulation / Rollout
	Slide 32: MCTS Part 4 – Backpropogation
	Slide 33: Improvements to MCTS Components
	Slide 34: Upper Confidence Trees (UCT)
	Slide 35: Upper Confidence Trees (UCT)
	Slide 36: Upper Confidence Trees (UCT)
	Slide 37: Improvements to MCTS Components

