
CSE 190 - Intro to Deep RL
Search for

Planning in Simulations
Prithviraj Ammanabrolu

Logistics

• Group signups are due Thursday
• Ideally 4-6 members

Basic components of a simulation

• S = set of all states
• propositions that are true: you are in a house, door is open, knife in drawer

• A = set of all actions
• take knife from drawer, walk through door

• T = transition matrix T: (S, A)→S
• (you are in a house & door is open, walk through door) → you are outside

There are pre-conditions that need to be met to perform a certain
action, and post-conditions that are true after

What’s in a PDDL task?

• Objects: Things in the world that interest us.
• Predicates: Properties of objects that we are interested in; can be

true or false.
• Initial state: The state of the world that we start in.
• Goal specification: Things that we want to be true.
• Actions/Operators: Ways of changing the state of the world.

2 .pddl files, domain and problem

Slide credits for most PDDL stuff: Malte Helmert and Sheila McIllraith UofT.

You have a simulation, now what?

• You need to plan out a policy
• Sequence of actions to get from start state to goal state
• A *plan* gives you a way of getting said policy

• Can be expressed as constraints on actions you can perform

How to get a plan?

• Search is a way of getting possible plans for a given spec

Search Terminology

• State Space Search - each state is a node on the search tree, go
from there

• Planning Space Search – searching through space of possible
plans or constraints on actions

• Satisficing – looking longer and longer for a good enough solution
• Optimal – looking for the best possible solution there is

Standard (but not necessary) Assumptions

• No environment stochasticity, exact post conditions always
manifest once action is executed

• No agent stochasticity, actions are always executed as planned
• Think about ways not having these assumptions would

complicate things in the methods we talk about here on out

Properties of Forward Search

• Sound: plans generated by the traces will guarantee a solution if
executed

• Complete: if a solution exists, then at least one of the search’s
traces will be a solution

Forward Search

• Some deterministic implementations of forward search:
• breadth-first search
• depth-first search
• best-first search (e.g., A*)
• greedy search

• Breadth-first and best-first search are sound and complete But they
usually aren’t practical, requiring too much memory
• Memory requirement is exponential in the length of the solution

• In practice, more likely to use depth-first search or greedy search
• Worst-case memory requirement is linear in the length of the solution
• In general, sound but not complete
• But classical planning has only finitely many states
• Thus, can make depth-first search complete by doing loop-checking

Forward Search Example –
BlocksWorld

Forward Search Example

Pickup(c)

Pickup(b)

…

a b c

Initial state Goal state

s1

si

Forward Search Issues

• Branching factor - lots of possible states and actions,
deterministic searches waste time trying a bunch of unnecessary
stuff

• State and action spaces can blow up memory and compute costs

mailbox
north
house
my
four
shoulder
movie
bottom
box
Bozbar

Open
Go
Examine
The
Shout
Carry
Show
Mount
Cross
Shred
Adjust

with
in
on
above
below
until
was
over
under

colleague
comma
magic
amazing
scrolls
some
bronze
cyclops

Imagine a controller with ~50000 buttons. How to scale language planning?
(Game of Go ~250, Chess ~35)

Step 2Step 1 Step 3 Step 4 …

√ Χ

mailbox
north
house
me
four
shoulder
movie
was
box
Bozbar

Open
Go
Examine
The
It
Carry
Show
Mount
Cross
Shred
Adjust

a
in
on
above
below
until
from
quite
under

colleague
show
magical
man
scrolls
some
bronze
cyclops

Backward Search

• For forward search, we started at the initial state and computed
state transitions
• new state = T(s,a)

• For backward search, we start at the goal and compute inverse
state transitions
• new set of subgoals = T-1(g,a)

• To define T-1(g,a), must first define relevance: An action a is
relevant for a goal g if
• a makes at least one of g’s literals true, g ∩ effects(a) ≠ ∅
• a does not make any of g’s literals false, g + ∩ effects – (a) = ∅ and g– ∩

effects + (a) = ∅

Backward Search

• To define T-1(g,a), must first define relevance: An action a is
relevant for a goal g if
• a makes at least one of g’s literals true, g ∩ effects(a) ≠ ∅
• a does not make any of g’s literals false, g+ ∩ effects-(a) = ∅ and.

g- ∩ effects+(a) = ∅
• If a is relevant for g, then T-1(g,a) = (g- effects(a)) ∪ precond(a)
• Otherwise, T-1(g,a) is undefined

Backward Search Example

Pickup(a)

Pickup(b)

…

a b c

Initial state Goal state

s'1

s'i

Backward Search Issues

• Branching factor
• an operator o that is relevant for g may have many instances a1, a2, …, an

such that each ai’s input state might be unreachable from the initial state

• Goal states are actually described by constraints instead of exact
list of propositions

• Generating predecessor states (inverting Transition matrix) is hard

Mitigations for Such Issues

• Pruning state or action space … somehow
1. Just describe constraints that need to be satisfied
2. Find a heuristic to move effectively through state space

Total Order and Partial Order Plans

• Exact order of actions may not matter
• If you can break down problem into subproblems, partial planning

may be easier → some actions and constraints on when they can
be executed

• Partially ordered plans = planning space search (rather than state
space search)

Total Order and Partial Order Plans

Heuristic Planning - STRIPS

• One of the first planning algorithms (Shakey the robot)
• π ← the empty plan
• do a modified backward search from g

• ** each new subgoal is precond(a)
• when you find an action that’s executable in the current state, then go

forward on the current search path as far as possible, executing actions
and appending them to π

• repeat until all goals are satisfied

Heuristic Planning - STRIPS

STRIPS Example

• Exercise, solve this like STRIPS would

Initial state

a
b

c

Goal state

Limitation of STRIPS

• Exercise, solve this like STRIPS would
• Move a on top of b
• Move b on top of c
• Contradictory subgoals

Initial state

a
b

c

Goal state

Simulation Search

• Evolution of heuristic search, the model of the world is the
heuristic that decides how the agent moves forward

• Use the simulation to build estimates of the “value” of being in a
state – intuitively, if I am in a state what is the likelihood I will win

Monte Carlo Methods

• A set of methods that focus on learning better from simulated
experiences collected by interacting with an environment

• When to use? You have a way of easily simulating an environment
but it is too complex to solve deterministically with planning /
search

Monte Carlo Tree Search

• 4 phases of building out and simulating paths along a search tree
• Various forms of this used in everything from Alpha Zero to

modern LLM inference
• For arbitrary problem with start state s0 and actions ai

• All states have attributes:
• Total simulation reward Q(s) and
• Total no. of visits N(s)

MCTS Part 1 - Selection

• From the current state, pick an
action to perform

• For now, assume we pick
randomly

• Update N(s) as you pick a new
state

MCTS Part 2 - Expansion

• Execute transition
• If resultant state is a terminal state,

observe result (reward)

MCTS Part 3 – Simulation / Rollout

• If it isn’t a terminal state, finish a
playout until it is

• For now, we will “cheat” and directly
use our simulation for this

MCTS Part 4 – Backpropogation

• Add the reward of the simulated
path to all node scores, this gives
you Q(s)

Improvements to MCTS Components

• Improvements are possible for each of the parts I talked about
• Think about that it would take to improve selection / expansion

phases

Upper Confidence Trees (UCT)

• A way of improving the selection phase by treating selection as a
multi-arm bandit problem: which possible action to select that
maximizes the possible payout (reward) in the future

Upper Confidence Trees (UCT)

• A way of improving the selection phase by treating selection as a
multi-arm bandit problem: which possible action to select that
maximizes the possible payout (reward) in the future

Exploit

Upper Confidence Trees (UCT)

• A way of improving the selection phase by treating selection as a
multi-arm bandit problem: which possible action to select that
maximizes the possible payout (reward) in the future

Exploit Explore

Improvements to MCTS Components

• Improvements are possible for each of the parts I talked about
• Think about that it would take to improve selection / expansion

phases
• Can you go further? How to improve the simulation phase?
• Can you add learning in here somehow?

	Slide 1: CSE 190 - Intro to Deep RL Search for Planning in Simulations
	Slide 2: Logistics
	Slide 3: Basic components of a simulation
	Slide 4: What’s in a PDDL task?
	Slide 5: You have a simulation, now what?
	Slide 6: How to get a plan?
	Slide 7: Search Terminology
	Slide 8: Standard (but not necessary) Assumptions
	Slide 9: Properties of Forward Search
	Slide 10: Forward Search
	Slide 11: Forward Search Example – BlocksWorld
	Slide 12: Forward Search Example
	Slide 13: Forward Search Issues
	Slide 14
	Slide 15: Backward Search
	Slide 16: Backward Search
	Slide 17: Backward Search Example
	Slide 18: Backward Search Issues
	Slide 19: Mitigations for Such Issues
	Slide 20: Total Order and Partial Order Plans
	Slide 21: Total Order and Partial Order Plans
	Slide 22: Heuristic Planning - STRIPS
	Slide 23: Heuristic Planning - STRIPS
	Slide 24: STRIPS Example
	Slide 25: Limitation of STRIPS
	Slide 26: Simulation Search
	Slide 27: Monte Carlo Methods
	Slide 28: Monte Carlo Tree Search
	Slide 29: MCTS Part 1 - Selection
	Slide 30: MCTS Part 2 - Expansion
	Slide 31: MCTS Part 3 – Simulation / Rollout
	Slide 32: MCTS Part 4 – Backpropogation
	Slide 33: Improvements to MCTS Components
	Slide 34: Upper Confidence Trees (UCT)
	Slide 35: Upper Confidence Trees (UCT)
	Slide 36: Upper Confidence Trees (UCT)
	Slide 37: Improvements to MCTS Components

