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Logistics

• Group signups are due Thursday
• Ideally 4-6 members



Basic components of a simulation

• S = set of all states 
• propositions that are true: you are in a house, door is open, knife in drawer

• A = set of all actions
• take knife from drawer, walk through door

• T = transition matrix T: (S, A)→S
• (you are in a house & door is open, walk through door) → you are outside

There are pre-conditions that need to be met to perform a certain 
action, and post-conditions that are true after



What’s in a PDDL task?

• Objects: Things in the world that interest us. 
• Predicates: Properties of objects that we are interested in; can be 

true or false. 
• Initial state: The state of the world that we start in. 
• Goal specification: Things that we want to be true.
• Actions/Operators: Ways of changing the state of the world.

2 .pddl files, domain and problem

Slide credits for most PDDL stuff: Malte Helmert and Sheila McIllraith UofT.



You have a simulation, now what?

• You need to plan out a policy
• Sequence of actions to get from start state to goal state
• A *plan* gives you a way of getting said policy

• Can be expressed as constraints on actions you can perform



How to get a plan?

• Search is a way of getting possible plans for a given spec



Search Terminology

• State Space Search - each state is a node on the search tree, go 
from there

• Planning Space Search – searching through space of possible 
plans or constraints on actions

• Satisficing – looking longer and longer for a good enough solution
• Optimal – looking for the best possible solution there is



Standard (but not necessary) Assumptions

• No environment stochasticity, exact post conditions always 
manifest once action is executed

• No agent stochasticity, actions are always executed as planned
• Think about ways not having these assumptions would 

complicate things in the methods we talk about here on out



Properties of Forward Search

• Sound: plans generated by the traces will guarantee a solution if 
executed

• Complete: if a solution exists, then at least one of the search’s 
traces will be a solution



Forward Search

• Some deterministic implementations of forward search:
• breadth-first search 
• depth-first search
• best-first search (e.g., A*) 
• greedy search 

• Breadth-first and best-first search are sound and complete But they 
usually aren’t practical, requiring too much memory 
• Memory requirement is exponential in the length of the solution 

• In practice, more likely to use depth-first search or greedy search
• Worst-case memory requirement is linear in the length of the solution 
• In general, sound but not complete 
• But classical planning has only finitely many states 
• Thus, can make depth-first search complete by doing loop-checking



Forward Search Example –
BlocksWorld



Forward Search Example

Pickup(c)

Pickup(b)

…

a b c

Initial state Goal state

s1

si



Forward Search Issues

• Branching factor - lots of possible states and actions, 
deterministic searches waste time trying a bunch of unnecessary 
stuff

• State and action spaces can blow up memory and compute costs
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Imagine a controller with ~50000 buttons. How to scale language planning?
(Game of Go ~250, Chess ~35)
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Backward Search

• For forward search, we started at the initial state and computed 
state transitions 
• new state = T(s,a ) 

• For backward search, we start at the goal and compute inverse 
state transitions 
• new set of subgoals = T-1(g,a ) 

• To define T-1(g,a), must first define relevance: An action a is 
relevant for a goal g if 
• a makes at least one of g’s literals true, g ∩ effects( a) ≠ ∅ 
• a does not make any of g’s literals false, g + ∩ effects – ( a) = ∅ and g– ∩ 

effects + ( a) = ∅



Backward Search

• To define T-1(g,a), must first define relevance: An action a is 
relevant for a goal g if 
• a makes at least one of g’s literals true, g ∩ effects( a) ≠ ∅ 
• a does not make any of g’s literals false, g+ ∩ effects-(a) = ∅ and.                    

g- ∩ effects+(a) = ∅
• If a is relevant for g, then T-1(g,a) = (g- effects(a)) ∪ precond(a)
• Otherwise, T-1(g,a) is undefined



Backward Search Example

Pickup(a)

Pickup(b)

…

a b c

Initial state Goal state

s'1

s'i



Backward Search Issues

• Branching factor
• an operator o that is relevant for g may have many instances a1, a2, …, an 

such that each ai’s input state might be unreachable from the initial state

• Goal states are actually described by constraints instead of exact 
list of propositions

• Generating predecessor states (inverting Transition matrix) is hard



Mitigations for Such Issues

• Pruning state or action space … somehow
1. Just describe constraints that need to be satisfied
2. Find a heuristic to move effectively through state space



Total Order and Partial Order Plans

• Exact order of actions may not matter
• If you can break down problem into subproblems, partial planning 

may be easier → some actions and constraints on when they can 
be executed

• Partially ordered plans = planning space search (rather than state 
space search)



Total Order and Partial Order Plans



Heuristic Planning - STRIPS

• One of the first planning algorithms (Shakey the robot)
• π ← the empty plan 
• do a modified backward search from g 

• ** each new subgoal is precond(a)
• when you find an action that’s executable in the current state, then go 

forward on the current search path as far as possible, executing actions 
and appending them to π 

• repeat until all goals are satisfied



Heuristic Planning - STRIPS



STRIPS Example

• Exercise, solve this like STRIPS would

Initial state

a
b

c

Goal state



Limitation of STRIPS

• Exercise, solve this like STRIPS would
• Move a on top of b
• Move b on top of c
• Contradictory subgoals

Initial state

a
b

c

Goal state



Simulation Search

• Evolution of heuristic search, the model of the world is the 
heuristic that decides how the agent moves forward

• Use the simulation to build estimates of the “value” of being in a 
state – intuitively, if I am in a state what is the likelihood I will win



Monte Carlo Methods

• A set of methods that focus on learning better from simulated 
experiences collected by interacting with an environment

• When to use? You have a way of easily simulating an environment 
but it is too complex to solve deterministically with planning / 
search



Monte Carlo Tree Search

• 4 phases of building out and simulating paths along a search tree
• Various forms of this used in everything from Alpha Zero to 

modern LLM inference
• For arbitrary problem with start state s0 and actions ai

• All states have attributes: 
• Total simulation reward Q(s) and 
• Total no. of visits N(s)



MCTS Part 1 - Selection

• From the current state, pick an 
action to perform

• For now, assume we pick 
randomly

• Update N(s) as you pick a new 
state



MCTS Part 2 - Expansion

• Execute transition
• If resultant state is a terminal state, 

observe result (reward)



MCTS Part 3 – Simulation / Rollout

• If it isn’t a terminal state, finish a 
playout until it is

• For now, we will “cheat” and directly 
use our simulation for this



MCTS Part 4 – Backpropogation

• Add the reward of the simulated 
path to all node scores, this gives 
you Q(s)



Improvements to MCTS Components

• Improvements are possible for each of the parts I talked about
• Think about that it would take to improve selection / expansion 

phases



Upper Confidence Trees (UCT)

• A way of improving the selection phase by treating selection as a 
multi-arm bandit problem: which possible action to select that 
maximizes the possible payout (reward) in the future



Upper Confidence Trees (UCT)

• A way of improving the selection phase by treating selection as a 
multi-arm bandit problem: which possible action to select that 
maximizes the possible payout (reward) in the future

Exploit



Upper Confidence Trees (UCT)

• A way of improving the selection phase by treating selection as a 
multi-arm bandit problem: which possible action to select that 
maximizes the possible payout (reward) in the future

Exploit Explore



Improvements to MCTS Components

• Improvements are possible for each of the parts I talked about
• Think about that it would take to improve selection / expansion 

phases
• Can you go further? How to improve the simulation phase?
• Can you add learning in here somehow?
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